
A-Mash: Providing Single-App Illusion for Multi-App Use
through User-centric UI Mashup

Sunjae Lee1*, Hoyoung Kim1, Sijung Kim1, Sangwook Lee1, Hyosu Kim2, Jean Young Song3

Steven Y. Ko4, Sangeun Oh5, Insik Shin1,6*
1KAIST, S. Korea 2Chung-Ang University, S. Korea 3DGIST, S. Korea

4Simon Fraser University, Canada 5Ajou University, S. Korea, 6Fluiz Corp., S. Korea

*{sunjae1294,insik.shin}@kaist.ac.kr

ABSTRACT

Mobile apps offer a variety of features that greatly enhance user

experience. However, users still often find it difficult to use mo-

bile apps in the way they want. For example, it is not easy to use

multiple apps simultaneously on a small screen of a smartphone.

In this paper, we present A-Mash, a mobile platform that aims to

simplify the way of interacting with multiple apps concurrently

to the level of using a single app only. A key feature of A-Mash is

that users can mash up the UIs of different existing mobile apps

on a single screen according to their preferences. To this end, A-

Mash 1) extracts UIs from unmodified existing apps (dynamic UI

extraction) and 2) embeds extracted UIs from different apps into a

single wrapper app (cross-process UI embedding), while 3) making

all these processes hidden from the users (transparent execution

environment). To the best of our knowledge, A-Mash is the first work

to enable UIs of different unmodified legacy apps to seamlessly in-

tegrate and synchronize on a single screen, providing an illusion as

if they were developed as a single app. A-Mash offers great potential

for a number of useful usage scenarios. For instance, a user can

mashup UIs of different IoT administration apps to create an all-

in-one IoT device controller or one can mashup today’s headlines

from different news and magazine apps to craft one’s own news

headline collection. In addition, A-Mash can be extended to an AR

space, in which users can map UI elements of different mobile apps

to physical objects inside their AR scenes. Our evaluation of the

A-Mash prototype implemented in Android OS demonstrates that

A-Mash successfully supports the mashup of various existing mobile

apps with little or no performance bottleneck. We also conducted

in-depth user studies to assess the effectiveness of the A-Mash in

real-world use cases.

CCS CONCEPTS

• Human-centered computing → Graphical user interfaces;

User interface management systems; User centered design.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9181-8/22/10. . . $15.00
https://doi.org/10.1145/3495243.3560522

KEYWORDS

Multi-tasking; User Interface mashup; Multi app execution; Mobile

platform; Multi-app single-screen

ACM Reference Format:

Sunjae Lee1*, Hoyoung Kim1, Sijung Kim1, Sangwook Lee1, Hyosu Kim2,

Jean Young Song3, Steven Y. Ko4, Sangeun Oh5, Insik Shin1,6*. 2022. A-Mash:

Providing Single-App Illusion for Multi-App Use through User-centric UI

Mashup. In The 28th Annual International Conference On Mobile Computing

And Networking (ACM MobiCom ’22), October 17–21, 2022, Sydney, NSW,

Australia. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3495243.3560522

1 INTRODUCTION

Mobile apps have made our lives significantly easier and conve-

nient. Various apps provide a wide variety of features that greatly

simplify and enrich the end-user experience in a variety of areas,

including social media, entertainment, and shopping. Furthermore,

as the mobile apps become increasingly sophisticated and diversi-

fied, smartphone users often want to use their smartphones across

app boundaries [21, 37]. A typical example is where users perform

multi-tasking. For instance, when running outside for an exercise,

a user might want to constantly check her location using Goo-

gle maps, keep track of her records through Run tracker app, and

even listen to music through a music player app. However, since

modern-day mobile platforms do not support multiple apps to use

the smartphone screen simultaneously, she needs to constantly

switch between apps to perform each task independently.

Recently, a few mobile platforms have introduced new tech-

niques that allow multiple apps to run concurrently in a single

screen. Split-screen mode [2, 15] allows two apps to run side by side

by splitting the screen into two mini windows, Free-formmode [29]

allows individual apps to be drawn on a separate movable windows.

However, not to mention that it only supports maximum of two

apps at a time, it is inconvenient to interact with the apps when

they are drawn in such small windows. On the other hand, a couple

of studies [8, 38] have considered a similar problem in the web

environment and introduced techniques to mash up UI elements of

different webpages to create a single multi-purpose web interface.

Such an approach can be an effective solution in mobile environ-

ments as well since it can not only remove the need to switch

between apps when performing tasks that involve multiple apps,

but also display only the necessary UIs in the given small size of

screen. However, there is a large gap (i.e., code availability) between

the web and mobile environments to apply such techniques directly

to mobile apps (see Section 10).

690

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Sunjae Lee1*, Hoyoung Kim1 , Sijung Kim1 , Sangwook Lee1 , Hyosu Kim2 , Jean Young Song3

Steven Y. Ko4 , Sangeun Oh5 , Insik Shin1,6*

(a) Custom multi-tasking app construction. (b) App functionality integration. (c) AR/MR environments augmented with UIs of mobile
apps.

Figure 1: Use cases of A-Mash.

Motivated by the limitations of current state-of-the-art tech-

niques, we propose A-Mash1, a mobile platform that provides users

with a single-app illusion when using multiple apps simultane-

ously. That is, A-Mash enables users to use some selected features of

multiple apps simultaneously in a single screen as if they were de-

veloped as a single app. To this end, A-Mash allows users to extract

UI elements of unmodified existing mobile apps and mash them

together into a single integrated space, called a UI container2 app. A

UI container app serves as a UI playground where users can create

their own UI mashups by borrowing UIs from other existing apps

(called owner apps) and freely arrange, combine, and tailor them

according to their own needs and preferences. Users can then load

their UI mashups at any time and interact with the UIs through the

container app.

A-Mash offers great potential for numerous useful usage sce-

narios, depending on which set of UIs users decide to mashup

(see Figure 1). For instance, as illustrated in Figure 1(a), upon the

aforementioned multi-tasking scenario that involves three apps: 1)

Google maps, 2) run tracker app, and 3)music player app, a user can

extract i) map UI from the Google maps, ii) timer UI and iii) distance

UI from the run tracker app, and iv) music play bar UI from the music

player app to craft a custom app interface where she can check

her location, track both the running time and distance, and even

control her music, all within a single screen. Likewise, as depicted

in Figure 1(b), the user can build an all-in-one IoT device controller

app by borrowing UI elements from different administrator app

and placing them all together in the single container. One could

also imagine an AR/MR scenario, where a user can augment their

AR/MR scene with UI elements of other mobile apps. As shown

in Figure 1(c), a user can place control buttons of a TV remote

control app next to a TV to intuitively interact with the TV in her

AR/MR environment. As such, A-Mash can be utilized to enrich

one’s AR/MR environment using existing mobile apps.

This paper presents the design and implementation of A-Mash

that aims to achieve the following goals: i) transparency, ii) high

coverage, iii) performance and iv) user-centric design. i) For trans-

parency, A-Mash seeks to be fully compatible with existing mobile

apps; it does not require the source code of existing apps or any

modification to their code. ii) For high coverage, A-Mash allows

1Our demo video is available at http:/cps.kaist.ac.kr/amash.
2Throughout the rest of the paper, "UI container" app is abbreviated to "container" app

users to mash up a wide range of app functionalities beyond what

existing apps make available through open APIs; since UI is the pri-

mary medium for triggering the app’s functionalities, A-Mash allows

users to mash up all the app functionalities accessible through UIs.

iii) For performance, A-Mash eliminates any form of inter-process

communication while supporting UI mashup between apps and

does not employ any emulation of owner apps’ execution within a

container app; A-Mash is able to execute the functionalities of UIs,

including rendering and event handling, within the process bound-

ary of the UI’s original owner app without requiring any direct

communication between owner apps and the container app. iv) For

user-centric design, A-Mash allows users to freely arrange and tailor

borrowed UIs to fit their personal needs, making it possible to craft

multi-app experiences in a highly flexible manner.

To achieve the above design goals, A-Mash addresses several

technical challenges: 1) Transparent execution environment. The key

aspect of A-Mash’s UI mashup inherently requires the capability to

execute apps such that only some selective UIs are visible to the

user, while the others are invisible. To this end, A-Mash leverages

logical display abstraction to create a new type of display, called

off-screen display, that is invisible to the users but works as an app’s

execution environment. 2) Dynamic UI extraction: A user may want

to extract some UIs that are deep inside the app’s activity (i.e., page).

To this end, A-Mash reaches to the proper execution point (i.e., ac-

tivity) of target UIs by developing an advanced form of UI-driven

record & replay technique [4, 19, 40] and transparently splits the

target UIs from existing legacy apps by employing the transparent

UI tree partitioning technique inspired by [20]. 3) Cross-process UI

embedding: A-Mash seeks to provide the single-app illusion such

that the UIs extracted from different owner apps work seamlessly as

if they were part of the container app. To support such an illusion

transparently and efficiently, A-Mash proposes cross-process floating

widgets that allow the extracted UIs to be displayed on top of the

container app. The unique widgets can operate based on the con-

tainer app’s life cycle without requiring any forms of inter-process

communication.

We demonstrate the concept of A-Mash by implementing a work-

ing prototype on Android using Google Pixel 4XL smartphone.

Our coverage evaluation using 20 off-the-shelf mobile apps shows

that A-Mash is highly compatible with unmodified existing apps

and can elicit many novel usage scenarios. Our in-lab performance

691

A-Mash: Providing Single-App Illusion for Multi-App Use through User-centric UI Mashup ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

evaluation proves that A-Mash’s design inflates little or no perfor-

mance degradation compared to the traditional app usage model.

To further explore the applicability and effectiveness of A-Mash, we

conduct a case study of extending A-Mash to an AR environment and

carry out user performance evaluation and in-depth usability study.

Lastly, we discuss about how A-Mash can co-exist with existing

designs of mobile applications in the overall mobile app ecosystems.

In specific, we uncover several new security concerns, including

spoofing attacks using A-Mash and issues of app governance, and

suggest practical solutions to each concern (see Section 11).

2 SYSTEM OVERVIEW

2.1 Background

UI Architecture. A UI is a building block for constructing a visual

interaction channel between the user and the app. Android frame-

work provides various types of UIs (e.g., buttons, toggle switches,

texts, images, andmuchmore) and uses a tree-shaped data structure,

calledUI tree, to dynamically manage UIs during app execution. One

display is assigned only one UI tree, and its contents are visually

projected onto the display screen via graphics stacks.

Logical Display. Modern mobile platforms use the concept of log-

ical display to extend display functionalities. (e.g., connecting to

external displays or pairing with smart TVs). For such display exten-

sion, Android offers a display abstraction, called LogicalDisplay, to

handle various forms of displays, including PhysicalDisplay,WifiDis-

play, and VirtualDisplay. Each display uses this abstraction in their

own ways to interact with underlying Android graphics stacks. One

key functionality of the LogicalDisplay is providing apps with an

isolated execution environment. Apps running on different logical

displays can run concurrently in the foreground. Other operat-

ing systems also provide their own display abstraction to support

various forms of displays (e.g., UIScreen in iOS.).

Foreground & Background Processes.When an Android appli-

cation is being launched, it creates several corresponding Linux pro-

cesses. Android framework dynamically manages those processes

to maintain system resources efficiently, based on the Android ac-

tivity lifecycle policy. When the app is visible to the users, it is

treated as a foreground app, and runs on the foreground process

with highest resource priority. When the app is not visible to the

users (possibly another app launched on top of it), it is treated as a

background app, and gets moved to the background process (i.e.,

cached process). When the app moves to the background, OS shuts

down its graphics stack along with other foreground only tasks

(e.g., input handling).

2.2 Workflow

To enable use cases in Figure 1, A-Mash adopts four phase end-user

workflow. The first two phases are for creating a UI mashup using

MashupRecorder app3, and the next two phases are for loading and

interacting with the UI mashup using the container app.

UI Selection.The first step towardsmashing upUIs is specifying

which UI to extract from which app. MashupRecorder provides a

3A-Mash provides users with a MashupRecorder app that allows users can use to
create a specification file for a new UI Mashup. The specification file is read by the
container app to load the UI mashup upon user’s request.

user-friendly interface for writing the specification by adopting the

programming by demonstration.

When the user requests to create a new UI mashup, MashupRe-

corder shows a list of installed apps and asks the user to launch an

app and navigate to the UI that the user wants to extract, just as

they would in the standard app usage pattern. Then, the user can

activate the UI selection mode by giving a multi-finger gesture on

the screen. Upon the activation, a gray translucency layer appears

over the app and the user can click any UIs on the screen to specify

which UI to extract. Meanwhile, A-Mash continuously monitors

UI events triggered during user interactions and records each UI

event’s type and the resource id of the associated UI that fired the

event handlers. These recordings will be later used in the Mashup

Loading phase to automate the app navigation (see Section 4).When

the user is done with the UI selection, MashupRecorder terminates

the app and navigates the user back to the list of installed apps.

The user can then repeat this process to extract multiple UIs from

different apps or hit "finish" to end the UI selection phase.

UI tailoring. Upon finishing the UI selection phase, all selected

UIs appear on the screen and users can tailor the UIs to their needs.

Users can resize and reposition each UI to craft a custom interface

and save the layouts of the interface for a later use. Such layout

information along with the information recorded during the UI

selection phase are saved as an XML file. Each XML file represents

a specification of a UI mashup and can be manually modified or

shared between users.

Mashup Loading. After successfully creating a UI mashup,

users can load them at any time using a container app. Upon the

user’s request, the container app reads the corresponding XML file

to identify which UI to borrow from which app. Then, it launches

the corresponding apps in the background and automatically ex-

tracts, layouts, and displays each selected UI. Note that the whole

procedure is done in a transparent manner so that it does not feel

intrusive to the users.

UI Interaction. After UIs have been loaded, users can freely in-

teract with the them. Since each UI functions as it did in its original

owner app, this allows users to access various functionalities of

different apps simultaneously, all within the container app. Once

users are done with the interaction, they can either terminate the

UIs completely or temporarily hide the UIs for future fast reloading.

2.3 System Design

In order to enable the workflow described in Section 2.2, A-Mash

adopts following three techniques (see Figure 2).

Transparent app execution environment. In order to exe-

cute the app’s foreground tasks without displaying them to the

users, we develop a new type of logical display, called offscreen dis-

play. Offscreen display allows apps to use the foreground process

to perform all their foreground tasks (e.g., UI rendering, UI event

handling, etc.) even though nothing is actually displayed on the

screen. The novelty of our technique lies in giving an illusion to

the apps that they are being properly rendered and executed in the

foreground when in fact, they are invisible to the users. Apps do not

need to be modified in any way nor require a dedicated run-time

system.

692

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Sunjae Lee1*, Hoyoung Kim1 , Sijung Kim1 , Sangwook Lee1 , Hyosu Kim2 , Jean Young Song3

Steven Y. Ko4 , Sangeun Oh5 , Insik Shin1,6*

Figure 2: A-Mash System Architecture

Dynamic UI extraction. In locating and extracting UI of in-

terest, A-Mash provides a fast and safe UI extraction mechanism.

First, for locating the UI, A-Mash uses delay-aware record&replay

technique. In replaying the sequence of UI events recorded dur-

ing the UI selection phase (see Section 2.2), A-Mash continuously

monitors the UI tree and checks if the UI associated with the event

has been loaded. Then, only after the associated UI has been de-

tected, A-Mash replays the UI event. Our technique works for both

statically loaded UIs and dynamically loaded UIs and guarantees

minimum delay between separate UI events. Next, for extracting

the UI, inspired by a recent work [20] which introduces a technique

to extract UI element transparently from an existing app, A-Mash

adopts its Single UI Tree Illusion to safely extract the UI without

compromising the app’s behavior.

Cross-process UI embedding. To enable a UI embedding

across app process (i.e., from owner apps to container app), we

cleverly adopt the concept of floating widget. Specifically, we de-

velop a technique to convert legacy UIs into floating widgets– a

type of UI that can float on top of other apps. This enables any

type of UI to be rendered and operated on top of the container app.

Then, to give the single-app illusion to the users, we synchronize

the life-cycle of floating widgets with that of the container app.

For instance, all floating widgets automatically disappear when the

container app goes to the background, and comes alive when the

container app resumes to the foreground.

3 TRANSPARENT EXECUTION

ENVIRONMENT

A-Mash enables a mash-up of different apps by selectively displaying

parts of their UIs in a container app. One of the key techniques that

make this possible is our off-screen display that appears as a regular

display to existing apps but does not draw anything on an actual

screen. We describe this technique in this section.

3.1 Limitations of the State-of-the-Art

Previous systems have developed techniques to execute an app in

the background without showing any visual output on a screen.

For example, UIWear [35] and ULPM [36] directly modify Android

to enable such functionality, while X-Droid [19] accomplishes the

same goal by introducing an application-layer emulator that can

execute an appwithout using a display. Although details differ, these

systems use a similar high-level approach where they completely

cut off an app from the underlying graphics stack.

However, such an approach would not work for A-Mash since

the goal is to display an app’s UI, albeit partially. Therefore, A-

Mash takes a different approach that does not cut off an app from

the graphics stack completely but provides an invisible, logical

display called an off-screen display to the app. Combined with our

UI tree partitioning technique described in Section 4.2, our off-

screen display allows us to selectively display parts of an app’s

UI.

3.2 Off-Screen Display

Our off-screen display is an invisible display given to each app used

as part of a mash-up. Since it appears as a regular display, there is

no difference from a physical display from an app’s point of view.

Furthermore, since modern mobile platforms (e.g., Android, iOS)

allow multiple apps to run concurrently in the foreground if they

each have their own display [2, 14], we do not need separate sched-

uling techniques to keep all apps active. In order to create such an

off-screen display for an app, we first create an empty window with

a size equal to that of the physical display. The reason for this equal

size is to ensure that responsive apps (i.e., apps that behave and

render differently based on the resolution of the display) to behave

exactly as they would do in the physical display. Then, to make it

invisible, we set the window’s transparency to the maximum value

and make it not touchable. This ensures that users can neither see

the window nor unintentionally inject inputs. Finally, we register

the window as a new logical display and attach the app. Since this

display is drawn on an invisible window, the app gets completely

hidden from the screen.

One caveat is that since we allow multiple apps to be active

in the foreground simultaneously, they all use system resources

such as battery. However, from our usability study in Section 9.3,

we observe that most of the usage scenarios involve two or three

apps, which is an acceptable number of apps. We note that existing

multi-app techniques (e.g., multi-window, PiP (Picture-in-Picture),

etc.) keep a similar number of apps active in the foreground as well.

Furthermore, since A-Mash can simplify the steps for tasks that

involve multiple apps, it can reduce the overall resource usage effec-

tively. In fact, from our user performance evaluation in Section 9.2,

we have observed that users can reduce their task execution time

up to 55% when performing tasks that involve two apps. Based

on our simulation of such user behavior, this could lead to up to

52% less battery consumption. Our evaluation in Section 8 provides

more details.

4 DYNAMIC UI EXTRACTION

Though our off-screen display allows us to execute an app in an

invisible fashion, our goal is to partially display an app’s UI as

part of a mash-up. Thus, we need a way to locate and extract

the UI elements that we do want to display from an app. A-Mash

693

A-Mash: Providing Single-App Illusion for Multi-App Use through User-centric UI Mashup ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

develops two techniques to enable it: delay-aware record & replay

and transparent UI Tree partitioning.

4.1 Delay-Aware Record & Replay

Before extracting the UI from an app, we must first ensure that

the UI elements we want to extract have been properly instanti-

ated. Since UI objects are instantiated only within the context of

its hosting app window (called an Activity on Android), we must

navigate the app to the proper Activity prior to extracting the UI

elements. To automate such a process, A-Mash adopts record & re-

play, a technique used widely across various fields to reproduce an

execution of a program. A-Mash’s record & replay has the following

characteristics: i) user-programmable, ii) fast, and iii) generic.

MashupRecorder app. To record how an app is navigated

to a target Activity, MashupRecorder app continuously monitors

UI events triggered with user interactions during the UI selection

phase of our workflow. Upon each UI event, MashupRecorder logs

the UI event’s type (e.g., touch, key) and the resource ID of the

corresponding UI element in an XML file.

Delay-aware replay. When an owner app gets launched on

an off-screen display, A-Mash automatically navigates the app to

the target UIs by replaying the sequence of UI events written in

the XML file. In the process, we need to find an optimal time gap

between any two consecutive UI events to achieve a minimal delay

and provide high accuracy. If the time gap is too short, the UI will

not be ready to trigger the associated event handler, and if the time

gap is too long, it will cause an unnecessary delay. To address this

problem, A-Mash continuously monitors the UI tree and checks if

the associated UI has been loaded. Then, upon discovering the UI,

A-Mash replays the UI event. This allows A-Mash to replay UI events

with a minimal time gap and still provide the correctness of the

replay.

Generalizing search queries. Often times, users may want to

extract UIs that depend on search results. For example, a user may

extract a navigation UI that appears only after searching for a spe-

cific place. In such cases, it is possible for A-Mash to automatically

extract the identical UIs by replaying the search queries recorded

in advance. However, some users may also want to generalize these

search queries so that the extracted UIs can show different contents

(e.g., information about different places) according to their con-

textual situation. To satisfy these two conflicting needs, A-Mash’s

container app gives users a choice by providing a text input UI

where users can type different queries for using UIs with differ-

ent contents. Users can easily enable or disable the text input UI

according to their needs.

4.2 Transparent UI Tree Partitioning

Using our record & replay, we can automatically navigate any app to

its target Activity. The next step is to extract the target UI elements

from the app and display them in the container app. However, since

an app’s UI tree is tightly coupled with the app’s internal state and

control flow, arbitrarily partitioning a UI tree can cause unexpected

side effects. Therefore, to safely extract UIs from its UI tree, we

adopt the Transparent UI Tree partitioning technique from a work,

FLUID-XP [20]. Its key idea is to reconstruct the UI tree to have

two types of edges: logical edges andrendering edges. The former

is used by the app logic to execute any UI-related functionalities

(e.g., updating UI states, UI event handling), and the latter is used

by the rendering process to draw the UI tree. Then, to split the

target UIs from the UI tree, we remove only the rendering edges in

between the UIs and the UI tree. All logical edges are maintained as

it was. This allows app logic to function as if the UI tree has never

been partitioned, whereas from the rendering process’ perspective,

target UIs are properly extracted from its UI tree. The dangling

rendering edge of the target UI can later be attached to any other

UI tree to be rendered separately from its original UI tree.

5 CROSS-PROCESS UI EMBEDDING

Once UIs have been extracted, they are ready to be embedded into

the container app to create amash-up that combines their respective

features. A-Mash aims to provide a single-app illusion—an illusion

that gives users a look and feel that they are interactingwith a single

unified app. This section explores various approaches available for

embedding UIs and introduces how A-Mash efficiently implements

the single-app illusion.

5.1 Possible Approaches

A body of works closely related to UI mash-up is cross-device UI

distribution. There are largely two approaches: pixel-level distri-

bution [20] and object-level distribution [25, 35, 39]. The former

approach can be adopted in a way that extracted UIs are rendered

by its owner app and transferred to the container app in the form

of pixels so that UIs can be re-rendered inside the container app.

However, this approach requires time-consuming inter-process

communication between two processes (for pixel streaming). The

latter approach can be used to serialize the UI object along with its

graphics resources to reconstruct and render the UIs locally inside

the container app. Although this provides responsive UI interaction,

their design inherently suffers from the lack of UI coverage since

they only support UIs that are under the control of Android’s Java-

based UI stack. UIs directly rendered by native graphics libraries,

such as Skia [30], are not supported in this case.

5.2 Cross-Process Floating Widget

To overcome the limitations of previous approaches, A-Mash lever-

ages a special type of UI containers called floating widgets that can

overlay the UI of an app above all other UIs at all times even when

the app goes in the background. Well-known examples of floating

widgets include PiP (Picture-in-Picture) and system alerts. Floating

widgets are responsive because their processing, including render-

ing and event handling, takes place locally. In addition, floating

widgets support all UI types as they are built-in, platform-provided

containers. Thus, we convert extracted UIs into floating widgets

and display them inside a container app. We explain this process

further as follows.

Converting extracted UIs into floating widgets. As the first

step for displaying extracted UIs, we convert them into floating

widgets. Conventionally, converting a UI from an app into a floating

widget would require intensive modification to the app’s source

code. Specifically, there are three things that would need to happen.

First, the UI needs to be removed from the app’s original UI tree and

attached to the UI tree of the floating widget. Second, the app would

694

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Sunjae Lee1*, Hoyoung Kim1 , Sijung Kim1 , Sangwook Lee1 , Hyosu Kim2 , Jean Young Song3

Steven Y. Ko4 , Sangeun Oh5 , Insik Shin1,6*

require a new background service that keeps the UI alive while the

app is in the background. Third, since the UI is no longer accessible

from the app’s UI tree, all of the UI’s relevant functionalities (e.g.,

event handling, UI updates) should be modified and migrated to

that background service.

However, our extracted UIs do not need any such modification

due to the following two reasons. First, our extracted UIs belong to

their owner apps that never go in the background. This is because

each of the owner apps has an off-screen display and Android

never puts an app that uses a display in the background. Thus,

there is no additional background service necessary. Second, our

extracted UIs are removed from their original UI trees, but only

from the rendering point of view since only their rendering edges

are removed, not their logical edges (as mentioned in Section 4.2).

This has two implications. First, from the app logic’s point of view,

extracted UIs are still accessible via logical edges. Therefore, there

is no need to modify or migrate any of the relevant functionalities

for extracted UIs to function properly. The second implication is

that we can create new rendering edges to attach an extracted UI

to a floating widget’s UI tree. This means that when the UI tree of

the floating widget is rendered and displayed, the extracted UI will

also be rendered and displayed. Combining everything together,

we convert an extracted UI into a floating widget by first creating

an empty floating widget and then attaching the extracted UI to

the floating widget’s UI tree with new rendering edges.

Embedding floating widgets into a container app. In order

to give a single-app illusion to the users, floating widgets’ life-cycle

should be seamlessly synchronized with that of their container app.

For instance, when the container app goes to the background, all

floating widgets should automatically disappear from the screen.

However, since a floating widget operates only within the boundary

of its owner app, the container app cannot enforce such actions.

This requires us to implement a capability to control floating

widgets from a container app, which we accomplish by designing

a new UI type called UI display. As the name suggests, it works

as both a UI element and a (logical) display. Since it works as a

UI element, a container app can embed it and control it just as

any other UI elements. In addition, since it works as a display, it

is globally accessible via a system service of Android called the

Display Manager. Furthermore, a property of a floating widget is

that it can be used as a surface that is essentially an output data

buffer for a display. Using this property, we create a UI display for

each floating widget that uses the floating widget as the surface so

that the UI display can draw the UIs inside the floating widget. The

end result is that a container app can access floating widgets that

contain extracted UIs through the Display Manager and then use

them as UI elements.

To synchronize the life-cycle of UI displays and a container app,

we implement synchronization logic in the container app’s activity

life-cycle callbacks. Upon onStop(), all UI displays go to a hidden

state; upon onResume(), all UI displays become visible; and upon

onDestroy(), all owner apps get terminated and associated resources,

including UI displays and off-screen displays get freed.

6 IMPLEMENTATION

MashupRecorder andMashupXMLfile. A-Mash saves the spec-

ification of each UI mashup in an XML format. Due to space limit,

we cannot discuss in detail about the XML vocabularies; but in sum-

mary, it includes i) which app to launch, ii) how to navigate each

app to the target UI, iii) which UIs to extract, and iv) the position

and size of each UI on the container app.

To allow MashupRecorder app to automatically generate the

XML file, we modified the Android’s View class to continu-

ously monitor the UI events (e.g., onClick(), onKeyEvent(),

onLongPress()) triggered during the user interaction. It records

each UI event’s type and the resource ID of the associated UI that

triggered the event handlers. Note that the apps launched through

any other means are not affected by the above modification. Then,

when the user finishes the recording and UI re-tailoring processes,

MashupRecorder saves the recorded UI events and each UI’s final

position and size as an XML format inside the device’s public stor-

age so that container apps can have access to these files. In case a

UI event cannot be expressed with our input record syntax (e.g., UI

does not have resource id), A-Mash falls back to the traditional x-y

coordinate based input record & replay.

Backward-compatibility. From our user study, we have ob-

served that users sometimes wish to bring an owner app to the

foreground and use it in full screen mode. Therefore, to provide

backward-compatibility with the traditional app execution model,

we modified Android’s Task Manager to allow apps in the offscreen

displays to be migrated to the physical display’s task stack. While

interacting with the UI mashup, users can bring the UI’s owner app

to the physical display by long pressing the UI.

UI transition. To allow users to extract UIs from different activi-

ties of a single app, A-Mash provides transition between UIs. Similar

to the conventional app activity transition, A-Mash enables UIs from

the same app to replace each other when the app changes its fore-

ground activity. This is possible because we perform UI extraction

at the activity level. Whenever a new activity starts, A-Mash checks

the XML file to see if there are any UI events to replay or UIs to

extract from the activity. Likewise, when the app changes its screen

orientation and reloads all of its UIs according to the new screen

layouts, A-Mash repeats the UI extraction on the newly loaded UIs.

7 CASE STUDY: AR EXTENSION

To explore the range of A-Mash’s applicability, we have extended

its coverage to AR environment. With the same system design

and implementation as before, we created a new container app

called AR-container app. AR-container app is a camera-based AR

application that uses TensorFlow’s MobileNet SSD Model for object

recognition. It allows users to map an UI mashup to a physical

object. When the user points the camera to the object and clicks

on it, the AR-container app loads the associated UI mashup onto

the AR scene. Users can fill their AR environment with their own

rules to create a personalized AR space. For instance, as shown in

Figure 1(c), a user can attach TV controllers to the TV, and at the

same time, attach some personal memos to the flowerpot to remind

themselves of something when watering the flower. In doing so,

users do not need to understand their underlying source code to

import legacy mobile apps into the AR environment.

695

A-Mash: Providing Single-App Illusion for Multi-App Use through User-centric UI Mashup ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Table 1: A list of applications, their respective UIs, and possible use-case scenarios for coverage test.

There are several implementation details that enable the AR-

container app. Most importantly, we need to carefully synchronize

the UIs with the AR-container app. To synchronize the UIs with

their associated physical objects, we re-position and resize the UIs

based on the locations of the objects. This gives an impression

that the UIs are physically glued to the objects. In addition, when

the object gets out of the AR scene, we hide its associated UIs

from the screen, and when the object re-enters the scene, we bring

the UIs back. Note that this is very similar to what we do when

synchronizing UI mashups with the life-cycle of the conventional

container app.

8 EVALUATION

We have implemented a A-Mash prototype to demonstrate and eval-

uate its full functionality to mash up UIs of unmodified apps. The

A-Mash platform prototype is implemented using Android Open

Source Project (AOSP v.10). Across the evaluation, we use Google

Pixel 4 XL and two in-house UI container apps to evaluate the proto-

type –a conventional container app for the performance evaluation

and an AR-container app for the user study.

8.1 Coverage

To evaluate how well A-Mash supports unmodified apps, we down-

loaded and explored 20 off-the-shelf mobile apps from the Google

Play store. As shown in Table 1, we successfully crafted various

use-case scenarios through UI mashup. A countless number of pos-

sible combinations can be made using various UIs. For instance, 1)

ColorNote’s noteUI and 2) Wikipedia’s Today’s featured Article UI

can be mashed up to read the article while taking notes; 1) Adidas

Run Tracker’s distance and time UI, 2) Spotify’s Song list app, and

3) TripAdvisor’s list of nearby Attractions UI can be mashed up to

create a custom running app that shows a list of nearby attraction

to run for, and lets you control your music app at the same time.

The LoC column shows lines of code generated in the associated

XML file when extracting the UI. Although it is generated auto-

matically by the MashupRecorder app, anyone who can write XML

code, including app developers, UI designers, or tech-savvy users,

can easily create or modify the XML file themselves.

Figure 3: UI loading delay

8.2 Performance

We evaluate the performance of A-Mash for its interactive UI

mashup experience. We repeat each experiment a hundred times

and use a conventional container app as a testbed for A-Mash. We

measure the delay by triggering a system-level log event at each

stage of measurements.

Since, to our knowledge, there are no counterparts of A-Mash,

we simulate the behavior of other possible approaches introduced

in Section 5 for comparison. For the simulation, we created an

Android background service app that either uses binder IPC or

shared memory (SHM) to transmit UI’s raw pixel values to its

corresponding container app. Note that the simulated results are

very conservative estimation (disadvantageous to A-Mash) since it

does not include delays for fetching the UI’s pixel data from the

graphics buffer.

8.2.1 UI Loading Delay. Figure 3 plots UI loading delay, i.e., the

time it takes for the container app to load UI from another app. We

break it down into 1) UI extraction, 2) UI embedding (i.e., embedding

UIs to the container app), and 3) initial UI rendering times4. The

delays were measured for five different UI types under three differ-

ent sizes. The "UI size" row in the graph represents the width and

height of the UI; 500 indicates that the UI has 500x500 resolution.

4Note that the time for launching and navigating the app is excluded because these
delays are very dependent on the owner app’s behavior. These delays will be covered
in more detail in the user performance evaluation (see Section 9.2).

696

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Sunjae Lee1*, Hoyoung Kim1 , Sijung Kim1 , Sangwook Lee1 , Hyosu Kim2 , Jean Young Song3

Steven Y. Ko4 , Sangeun Oh5 , Insik Shin1,6*

Figure 4: UI interaction delay

The graph shows that A-Mash yields lower UI loading delays

compared to the IPC and SHM approaches in all cases. Furthermore,

A-Mash causes constant delays regardless of the type and size of UI,

while IPC and SHM increases delays depending on the size of UI.

Such a performance gap mainly comes from our cross-process UI

embedding technique. A-Mash renders UIs locallywithin their owner

apps’ processes and displays them directly on the screen. This way,

A-Mash imposes no additional overhead other than extracting UIs

and converting them to a UI display. On the other hand, the IPC and

SHM approaches perform almost the same steps as A-Mash does

(i.e., extracting UI, rendering them to a separate virtual displays for

pixel extraction) plus, they take additional steps to 1) transmit the

pixel data over to the container app and 2) re-render them on the

container app, which incurs substantial overheads. The overhead

of transmitting the pixel data can be mitigated if they use pixel

encoders. However, considering that the encoding process itself

takes 40∼60ms, it is not an appropriate solution.

8.2.2 UI Interaction Delay. Figure 4 plots the UI interaction delay,

i.e., the time taken to handle users’ input and reflect the result

of input handling to the screen. Here, we compare the delays of

A-Mash with the traditional app execution model.

The figure shows interesting results. In many cases, A-Mash

shows even lower delays than the traditional app execution model.

We attribute these results to the rendering procedure of Android.

Specifically, since extracted UIs are rendered separately from all

other UIs in its own isolated display (i.e., UI display), it does not go

through the composition phase of the rendering process. In other

words, while the traditional app execution model needs to com-

posite the pixels of the target UIs with all other UIs in the same

display, A-Mash requires no such process since each extracted UIs

are rendered independently on its own display.

On the contrary, IPC and SHM based approaches show very high

delays. This is because once UIs have been loaded, UIs under A-Mash

work the same way as they did in its owner app, but for IPC and

SHM, they must go through the pixel transmission and duplicate

rendering again every time the user gives an input.

8.3 Resource Consumption

This section evaluates the resource consumption of A-Mash in terms

of memory and battery under various conditions.

8.3.1 Memory Consumption. One of the key features of A-Mash is

the use of logical displays, and we measured how much memory A-

Mash consumes for each additional UI (logical) display instance. We

used Android Debug Bridge’s (adb) dumpsys meminfo command to

periodically log the memory usage of each app. During experiments,

Figure 5: Memory consumption per display

we increased the number of UI displays every 1 minute using our

container app for 15 minutes, while each UI display has a button

UI of 1500 x 1500 resolution.

Figure 5 shows the memory usage of Android system and the

container app over time. Note that it excluded the memory con-

sumption of all other processes since they are irrelevant to our

evaluation. The graph clearly demonstrates that as the number of

UI display increases, the graphics’ memory consumption increases

as well. On average, each new UI display consumes 9MB of extra

memory. This exactly matches the amount of memory required

to support a frame of 1500 x 1500 display in ARGB8888 format (4

bytes per pixel). Likewise, each off-screen display with 1440 x 3040

resolution (Pixel 4 XL) requires 17.5 MB memory, which translates

to 0.28% of the memory size (6GB) of Pixel 4 XL.

8.3.2 Battery Consumption. To estimate the effect of A-Mash on the

battery consumption more clearly, we used Android’s battery usage

profiler tool (Batterystats [17]) to measure the battery consumption

of individual apps.

Battery consumption of UI display– First, to measure the battery

consumption of each new UI (logical) display, under the same exper-

imental environment as in the memory consumption evaluation, we

measured the battery consumption of both the container app and

the Android system. We conducted experiments with UI displays

under two conditions: active and inactive. Active displays render

new frame every 1 second and inactive displays do not render after

initial renderings, both are in visible state. The result showed that

the battery consumption increases linearly (consumes additional

0.01 mAh for each new display) as the number of active display

increases from 0 to 15. On the other hand, the battery consumption

of inactive displays remains constant (0.1 mAh per minute) regard-

less of the number of displays. This implies that simply creating an

inactive UI display does not significantly affect battery consump-

tion. Rather, how actively each UI display is being used determines

the actual battery consumption.

Battery consumption of multiple foreground apps– Figure 6 shows

the battery consumption as the number of apps in the foreground

process increases from one to eleven (one using the physical display

and ten using offscreen displays). In this experiment, we launched

a new app every 10 minute. Note that we measure the battery con-

sumption of the whole device, including the screen. As shown in

the graph, there is no clear correlation between the number of

apps and the battery consumption. Based on our observation dur-

ing the experiment, the battery consumption is rather determined

by how actively each app is working. For instance, YouTube app

alone consumes 20 mAh every 10 min since it automatically plays

a video from the recent watched list. All other apps showed no

significant battery consumption except at its start up. We have also

697

A-Mash: Providing Single-App Illusion for Multi-App Use through User-centric UI Mashup ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Figure 6: Battery consumption of foreground apps

measured how much battery users would actually consume in the

real-world situations by simulating the user performance results

from Section 9.2. In the interest of brevity, we omit the figures; but

in summary, we found that for task scenarios that involves multiple

tasks (Scenario 3 & 4), users reduce their task completion time by

52% and 55%, and as a result, save battery consumption 39% and

52%, respectively.

9 USABILITY STUDY

To understand the effectiveness and usefulness of A-Mash from

the user’s point of view, we conducted three separate in-lab user

studies with five use-scenarios described in Section 7. The first

study aims to evaluate how effectively A-Mash simplifies the use of

multiple apps simultaneously by comparing the time spent on tasks

with or without A-Mash. The second study focuses on assessing the

usefulness and satisfaction of using A-Mash across the scenarios

compared to using existing apps. The third study compares the

subjective usability of A-Mash and Android’s Split-Screen mode [15]

which is the state-of-the-art multi-app interaction technique.

Participants were recruited through advertisement on an online

school community and an online local marketplace, and were paid

approximately 9 USD. The study procedures were in accordance

with out institution’s IRB policies.

9.1 Study Scenarios

We carefully chose five distinctive task scenarios to evaluate various

interaction with A-Mash.

Scenario 1: TV Control. Participants were asked to cast a YouTube

video on a smart TV and adjust the volume with a TV remote app.

When using A-Mash, volume control UI automatically popped up as

the user clicked on a TV through the AR-container app.

Scenario 2: Music Playing. Participants were asked to play all the

songs on the top chart in a music streaming app. When using A-

Mash, the player UI automatically popped up and played the songs

as the user clicked on a cup through the AR-container app.

Scenario 3: Banana Shopping. Participants were asked to compare

banana prices from two different shopping apps. When using A-

Mash, the prices of bananas in different shopping apps popped up

as the user clicked on a banana through the AR-container app.

Scenario 4: Wine Searching. Participants were asked to find wine

ratings from a wine rating app and its prices from a shopping app.

When using A-Mash, the rates and prices automatically popped up

as the user clicked on a wine bottle through the AR-container app.

Scenario 5: Coffee Ordering. Participants were asked to find the

closest coffee shop from two different coffee ordering apps to place

an order. When using A-Mash, it showed the list of nearby coffee

Figure 7: Task completion time

shops from both apps when the user clicked on a cup through the

AR-container app.

9.2 Study 1: Total Task Time Reduction

Participants and apparatus. We recruited twenty-three partic-

ipants through online school communities (15 males, 8 females,

mean age=25.4, stdev=6.2, max=53, min=19). Each participant were

given two Pixel 4XL Android smartphone, one for using AR-

extended A-Mash and another for using legacy apps.

Design. The experiment was conducted using within-subject

user study. The independent variable was the system (i.e., A-Mash or

legacy apps) that participants used for performing the given tasks.

The dependent variable was the task completion time for each task.

Procedure. Each session took 30-60 minutes long, and at the

start of each session, participants were given a demo video to un-

derstand how to use A-Mash and an existing legacy app for the

given task. Then, to prevent the learning effects when using A-

Mash, we instructed them to perform the task first using A-Mash,

and then do the same task using legacy apps. This step was repeat-

edly performed for five different scenarios in Section 9.1. We screen

recorded the devices (Pixel 4XL) and calculated the task completion

time afterwards.

Results and findings. Figure 7 compares the average total task

time the participants spent on each task when using A-Mash and

legacy apps. The figure shows that A-Mash significantly reduced the

average total task time for all five scenarios. Paired t-test demon-

strates a significant difference between the two different conditions

(Music Playing: p<0.01, Other scenarios: p<0.0001).

To better understand the results, we divided the task completion

time into three different stages: 1) App launch: the time to find the

right app to perform a given task; when using A-Mash, it is the

time taken to find its trigger object on the AR-container app. 2)

UI finding: the time to find a UI for the given task. 3) Interaction:

the time to conduct the given task using the UI. A-Mash reduced

time in all three stages except the app launch stage in Scenario 2:

Music Playing. We believe that this happened mainly due to two

factors. First, most of the participants used the music streaming app

every day, so they could quickly find it from the list of apps. Second,

many participants thought it was counter-intuitive to use cups to

run music streaming apps and rather expected to use speakers to

do it.

Another interesting observation is that A-Mash has not only

reduced the average task completion time, but also lowered the de-

viation between participants (standard deviation reduced by 53% on

698

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Sunjae Lee1*, Hoyoung Kim1 , Sijung Kim1 , Sangwook Lee1 , Hyosu Kim2 , Jean Young Song3

Steven Y. Ko4 , Sangeun Oh5 , Insik Shin1,6*

Figure 8: Satisfaction scores for individual scenarios

average). We believe that this indicates that A-Mash could be more

effective for those who took a relatively longer time to complete

tasks, possibly due to lower digital literacy or unfamiliarity with

the given apps, when completing the task with legacy apps. We

infer from this result that A-Mash can help people with low digital

literacy to more easily and conveniently conduct a task using digital

devices.

9.3 Subjective Usability of A-Mash

Participants and apparatus. We recruited twenty-two new par-

ticipants from online school communities and local online market-

place (12 females, 10 males, mean age=30.5, stdev=9.78, max=58,

min=20). Each participant were given two Pixel 4XL Android smart-

phone, one for using AR-extended A-Mash and another for using

legacy apps.

Design. The experiment was conducted using within-subject

user study. The independent variable was the system (i.e., A-Mash or

legacy apps) that participants used for performing the given tasks,

and the dependent variable was the satisfaction score of the system

that they evaluated for each task scenario.

Study procedure. The study procedure was similar with the

first user study except that the participants were asked to do the UI

mapping themselves. Participants were asked to select a mobile app

UI and map it on a nearby object, which helped them to understand

the concept of customizing the mapping between the object and

a mobile app function. After performing each scenario using A-

Mash and an existing legacy app, participants were asked to rate

the satisfaction of each method. They were also asked to freely

describe how they felt about using A-Mash.

Results and findings. Overall, participants thought using A-

Mash was satisfying. Figure 8 compares the satisfaction of using a

legacy app and A-Mash for each scenario. The error bar indicates the

20-80% distribution of participants’ rating. This is mainly because

most participants found that A-Mash is intuitive and easy to use and

enables to accomplish tasks quickly and efficiently in all scenarios

except one (Scenario 2: Music Playing). Below, we share some of

the quotes from the participants to help understand the experience

of using A-Mash.

Scenario 1: TV Control. “It is easy to use since I don’t have to

navigate the app to find the right UI (to execute a desired task) (P12)”.

Participants appreciated that it was effortless to learn how to use

A-Mash and how UIs of two different applications were brought into

one frame for convenience (YouTube app and TV remote app).

Scenario 2: Music Playing. “It will be more convenient if I can map

an app to a most-frequently used object (P4)”. Many participants

felt that mapping a music player to a cup is rather unexpected and

uncomfortable to use; there were similar user comments from the

first user study as well. On the other hand, a participant mentioned

that “I can create my own apps by putting my own functions and

emotions together into the objects I want (P7)”. For those participants

who understood that they can map the music player to any other

objects, they appreciated that they could create a customized, per-

sonal interaction channel through the surrounding objects with

A-Mash.

Scenario 3: Banana Shopping. “This will make the process of repeat

purchase very convenient (P8)”. Similarly, “It was useful to be able to

check the prices with the camera without having to search different

apps (P11)”.

Scenario 4: Wine Searching. “It shows me only the information I

want from two different apps at once (P9)”. Similar to Scenario 3,

“It’s convenient and useful because I can access information I want

without having to search through different apps (P10)”.

Scenario 5: Coffee Ordering. “The way we use smartphones is not

autonomous enough because we need to find and navigate an app to

access specific functionality. A-Mash is better in terms of efficiency

because we can use any app’s functionality instantly outside its app

boundary. (P14)”.

We summarize two main take-home messages from this user

study: 1) Every user has a different preference in setting and using a

functionality even within a single app, and the ability to customize

UIs can be a huge advantage and satisfying for each user. 2) A-

Mash could be especially powerful when conducting repeated tasks

because of the shortcut effect it creates. Users can be as creative as

possible in utilizing A-Mash to reduce time and simplify tasks they

do using apps on a daily basis.

9.4 Comparing with the State-of-the-Art

Participants and apparatus. We recruited twenty-two new par-

ticipants from online school communities (12 males, 10 females,

mean age=23.9, stdev=4.2, max=34, min=19). Each participant was

given two Pixel 4XL Android smartphone, one for using A-Mash

and another for the Android’s split-screen mode [15]. This time,

for a fair comparison, participants were given the UI container

app instead of the AR-container app for the A-Mash. Inside the

UI container app, we provided shortcut buttons that bring up the

pre-defined set of UIs necessary for each task scenarios. For the

split-screen mode, we provided app pair shortcuts that automati-

cally launch two pre-defined apps side-by-side in the split-screen

mode.

Design. The experiment was conducted using within-subject

user study. The independent variable was the system (i.e., A-Mash

or the split-screen mode) that participants used for performing the

given tasks, and the dependent variable was the subjective usability

score of the system that they evaluated for each task scenario.

Study procedure. We once again used task scenarios in Sec-

tion 9.1, but this time, we excluded the scenario 2: Music Playing

because it does not involve multi-app execution.

At the start of each session, participants were given a quick

tutorial on how to use A-Mash and the split-screen mode. Then,

participants went through a short practice session to get familiar

with the apps involved in the task scenarios. To reduce learning

effects, we divided the participants into two groups: The first group

was asked to perform each task using A-Mash first, and then do the

same task with the split-screen mode, while the other group was

699

A-Mash: Providing Single-App Illusion for Multi-App Use through User-centric UI Mashup ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

asked to do it in the opposite order. After performing each task

scenario, participants were asked to score how easy the task was

on a 7-point Likert scale. After all scenarios were done, participants

evaluated both systems using the System Usability Scale [5], and

were asked about the overall preference towards two systems.

Results and findings. Overall, participants felt A-Mash has

better usability than the split-screen mode. On average, A-Mash

scored 71.1 (std=16.7) out of 100 in the System Usability Score,

while the split-screen mode scored 62.6 (std=16.6). In addition, 16

out of 22 participants responded that they prefer A-Mash over the

split-screen mode, out of which 12 participants selected either "very

prefer" or "prefer" (i.e., 6 and 7 score on a 7-point Likert scale).

We also compared the average score of how easy the task was

when using A-Mash and the split-screen mode. On average, A-Mash

scored higher than the split-screen in all scenarios. In particular,

A-Mash has significantly higher score inWine Searching and Coffee

ordering scenarios, with Wilcoxon signed-rank test results of (W

= 11, p = 0.000) and (W = 13, p = 0.001), respectively. The most

dominant reason behind such result was the small window size

of the split-screen. 17 out of 22 participants commented at least

once that the split-screen feels uncomfortable because the UIs and

the app’s visible area becomes too small to interact with. On the

other hand, all participants responded at least once that A-Mash is

useful because it only the selective UIs were displayed in the screen,

which made each UI be more visible and easily interactable. Some

comments are as follows: "It (A-Mash) removes all the unnecessary

UIs and collects only what I needed. It feels very neat (P8)", "In the

case of split screens, it was inconvenient because the apps were not

tailored to the size of the split-screen. Buttons were reduced to small

size, and I accidentally exited the split-screen several times trying to

adjust the window size. In the case of A-Mash, all UIs were easy to see

on a large screen, so they were easy to use. (P12)."

One interesting observation from the users responses is that out

of 66 responses that said using A-Mash was very easy (i.e., 6 and

7 score on a 7-point Likert scale), 50 said it was because A-Mash

reduces the number of steps to conduct a task and shows only the

necessary UIs. Another interesting observation is that out of 16 cases

where participants felt using the split-screen mode is easier than

using A-Mash, 13 said it was because they were unsatisfied with

the pre-defined set of UIs that we provided. These observations

in-line with the two take-home messages from the second user

study: 1) Users have different preferences in settings, thus ability to

customize the set of UIs is a huge advantage, and 2) A-Mash could

be especially powerful for tasks repeated on daily basis, thanks to

its ability to reduce the steps and simplify the tasks.

10 RELATEDWORK

UI mashup in other fields. UI Mashup is an area of research

actively being explored in the web environment. Fusion [38] enables

web developers to extract UI elements from existing webpages and

turn them into a javascript gluecode. The developers can embed

these gluecodes into their webpages to create a UI mashup out of

existing webpages. C3W [8] is a web framework that allows end-

users to extract input elements from existing webpages and mash

them together into a spreadsheet-like container webpage. Although

they provide a useful UI mashup experience, their solutions are

not applicable to mobile environments. Unlike web environments

where UI’s source code is easily accessible through the HTML

DOM interface and multiple webpages can run concurrently in the

foreground, in mobile environments, app’s entire source code is

hidden and the number of app that can run in the foreground is

restricted to one. Therefore, the technical challenges that A-Mash

addresses are completely different from that of previous works. To

the best of our knowledge, A-Mash is the first work to bring the

concept of UI mashup into the mobile environment.

Beyond the web environment, few works have attempted to

provide UI mashups using desktop GUI apps [6, 31, 32]. These works

operate at the pixel level to copy and paste specific area of the app

into another window. However, as confirmed in Section 8.2, pixel-

level approach inflates too much delay in the mobile environment.

Other forms of functionalitymashup. There are other forms

of functionality mashups besides using UI. The most widely used

approach is data-centric mashups [7, 23, 34], where uses can select

webpage elements to export its data and manipulate them to their

needs. A similar approach, scrAPIr [1] seeks to make web Data

API accessible by the end-users so that end-users can access their

data without programming. In the mobile environment, Xdroid [19]

provides mobile app developers with a mashup library that can

emulate the functionalities of other existing apps. Developers can

use Xdroid library to specify which functionality to emulate and

embed into their apps. Although they provide mashup experience

through their own means, their usage scenarios are either confined

only to data mashup or targets developers, not the end-users.

Existing techniques for multi-app interaction. There are

few existing techniques that allow users to interact with multiple

apps concurrently on a single screen. Split-screen mode [2, 15]

allows two apps to run side by side on a single screen and free-form

mode allows apps to run in separate movable, resizable windows.

Although these techniques could be useful for devices with a larger

screen, it makes the app look too small to properly interact with.

Some other options include PiP mode [16] where an app can display

its video in a pinned small window overlaying other apps, and

launcher widget [11] that allows developers to create a miniature

app that can be embedded into launcher apps. These techniques can

make use of apps’ UIs in a more flexible ways, but it is confined to

specific types of UIs; PiP mode only supports video UI, and launcher

widget requires developers to write a separate app for each widget.

App shortcuts A few works provide shortcuts to app’s specific

activity or tasks. uLINK [4], SUGILITE [22], and RandR [27] adopt

record-and-replay techniques to allow users to create a custom

automation script. Apple’s shortcut [3] and Samsung’s routines [28]

allow users to create an automated script out of special apps that

exports its functionalities. They can serve as a good task automation

tool, but they cannot provide interactive multi-app experience as

A-Mash does.

11 DISCUSSION

Extensibility for UI container apps. Although the current ver-

sion of A-Mash provides only the UI container app with a blank

screen for UI mashup, we have already demonstrated in Section 9

that it can be successfully extended to an AR-based container app.

700

ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

Sunjae Lee1*, Hoyoung Kim1 , Sijung Kim1 , Sangwook Lee1 , Hyosu Kim2 , Jean Young Song3

Steven Y. Ko4 , Sangeun Oh5 , Insik Shin1,6*

Based on lessons from this case study, we can think of two ex-

tension ideas to unlock the potential of UI container apps. One is

to extend existing commercial apps themselves by providing UI

mashup APIs. They allow third-party app developers to easily em-

bed UI elements from different legacy apps into their own apps. As

a result, this feature will induce multi-app scenarios that borrow

functionalities from different apps in the unit of UI elements, which

are not supported by traditional mobile systems yet. The other is

to develop container apps specialized for AR/VR platforms such as

Google ARCore [10] and Microsoft HoloLens [24]. If the container

apps can actively utilize various features (e.g., motion tracking)

provided from AR/VR platforms rather than simply using a camera

as in the current A-Mash, we can elicit interesting use cases suitable

for AR/VR environments. To this end, it is necessary to support

advanced technologies for inter-platform UI mashup beyond the

level of inter-app UI mashup supported by A-Mash. We leave these

two extensions as our future works.

Unsupported commercial apps. A-Mash cannot support com-

mercial apps that employ customized UI engines such as unique

apps developed with cross-platform tools (e.g., Flutter [13], React

Native [26]) or 3D games using third-party game libraries (e.g.,

Unity [33]). This is because UI elements of such apps are managed

through different data structures placed inside the app-level UI

engines instead of accessible UI trees provided by mobile platforms.

This makes it impossible for the current prototype of A-Mash to

perform UI-driven record-and-replay and extract some UIs from

apps for UI mashup. However, because the app-level UI engines

also internally utilize UI tree structures similar to Android, we can

comprehensively apply A-Mash ’s design if they are provided as

open-source.

Invalidation of UI mashup specifications. When some

legacy apps are updated, relevant specifications (i.e., XML files

for UI mashup) may be invalidated because they may become in-

consistent with the updated apps. For example, this error may occur

if an updated app’s activity transition patterns are entirely changed

or its UI elements for mashup are removed. To handle such prob-

lems, A-Mash needs to verify whether all target UIs of legacy apps

can still be extracted whenever they are updated. If some UI ele-

ments cannot be found for some reason, A-Mash can delete only

the parts corresponding to the UIs from specifications and inform

users about this situation.

Potential security implications. As A-Mash presents a new

app interaction mechanism, new security threats could arise. For

instance, it can be exploited for a spoofing attack. With A-Mash,

a malicious app can easily mimic not only the visual appearance,

but also the functional behavior of other benign apps just by bor-

rowing their UIs. This would make spoofing attacks even harder to

detect. Furthermore, our offscreen-display can be exploited to se-

cretly perform malicious activities or inject synthetic input into the

benign apps. To prevent such security threats, features of A-Mash

(e.g., Offscreen-Display, UI extraction, cross-process UI embedding)

should be hidden from the user-level applications. All its function-

alities should be performed only with the system level permission.

In other words, the APIs to trigger these functionalities should be

opened only to apps with system permissions, so that third-party

malicious apps cannot exploit them. In practice, it would be ideal

for platform or device vendors to develop the container app them-

selves, and pre-build it inside the platforms, just as they would do

with other system apps (e.g., Google PlayStore, Gallery, Camera).

Intrusions on app governance and app’s business model.

The concept of extracting and mashing up only “parts” of the app

can potentially corrupt the intended display of the apps and violate

the expectation of the app developers. For instance, some relation-

ships between UI elements that convey necessary information to

the user, including disclaimers, caution symbols, and other neces-

sary disclosures in using the apps, could be hidden from the users.

In addition, A-Mash can be a direct circumvention to the in-app

advertisement policies since it enables users to use the app’s fea-

tures without watching the in-app advertisement. To prevent such

intrusion, we can provide app developers with the means to specify

their intentions on the UI elements. More specifically, we can add

a few UI attributes/developer APIs that app developers can use to

specify which UIs are not allowed to be extracted, and which UIs

must be included in the mashup by default when using their apps

for the UI mashup.

Stability and compatibility of underlying OS abstractions.

Although the implementation of the A-Mash is specialized for An-

droid, its key design components are not specific to the Android

platform. The underlying OS abstractions, Logical display, UI

tree, and Activity, are abstractions commonly used in many mo-

bile platforms under different names (e.g., RootViewController,

Element tree, and ViewController respectively in iOS). There-

fore, with proper implementation, our design can be applied to

many other mobile platforms as well. Moreover, since these abstrac-

tions have been the foundations of the mobile operating systems

since their early stage [9, 12, 18], it is unlikely for them to be dep-

recated in the near future.

12 CONCLUSION

We designed and implemented A-Mash, a mobile platform that pro-

vides an innovative way to interact with multiple apps simultane-

ously on a single screen. A-Mash enables end-users to extract UIs

from multiple apps and mash them up into single screen to create

their personalized mobile interface that encompasses multiple app’s

functionalities. A-Mash selectively extracts UI elements from exist-

ing mobile apps, seamlessly embed extracted UIs into our container

app, and provide apps with a transparent execution environment

so that they can work behind the scene to give a flawless single-app

illusion. Our prototype implementation has proven that A-Mash is

high transparency, coverage, performance, and usability. We expect

A-Mash to foster development of creative and useful multi-app us-

age scenarios to provide richer and more interactive mobile user

experience.

ACKNOWLEDGEMENTS

We thank our anonymous reviewers and shepherd for their in-

sightful and constructive comments that helped us improve this

paper. This work was supported in part by the National Research

Foundation of Korea (NRF) grant funded by the Ministry of Sci-

ence and ICT (NRF-2021R1F1A1063785, NRF-2022R1C1C1003123,

NRF-2022R1C1C1012664, NRF-2020R1A2C2005479, and ERC (NRF-

2018R1A5A1059921)).

701

A-Mash: Providing Single-App Illusion for Multi-App Use through User-centric UI Mashup ACM MobiCom ’22, October 17–21, 2022, Sydney, NSW, Australia

REFERENCES
[1] Tarfah Alrashed, Jumana Almahmoud, Amy X Zhang, and David R Karger. 2020.

ScrAPIr: Making Web Data APIs Accessible to End Users. In Proceedings of the
2020 CHI Conference on Human Factors in Computing Systems (CHI).

[2] Apple. 2022. Multitasking and Multiple Windows. https://developer.apple.com/
design/human-interface-guidelines/ios/system-capabilities/multitasking/.

[3] Apple. 2022. Shortcuts User Guide. https://support.apple.com/guide/shortcuts/
welcome/ios.

[4] Tanzirul Azim, Oriana Riva, and SumanNath. 2016. ULink: Enabling User-Defined
Deep Linking to App Content. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services (MobiSys).

[5] John Brooke. 1995. SUS: A quick and dirty usability scale. Usability Eval. Ind. 189
(11 1995).

[6] Morgan Dixon and James Fogarty. 2010. Prefab: Implementing Advanced Behav-
iors Using Pixel-Based Reverse Engineering of Interface Structure. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems (CHI).

[7] Rob Ennals, Eric Brewer, Minos Garofalakis, Michael Shadle, and Prashant Gandhi.
2007. Intel Mash Maker: Join the Web. ACM SIGMOD Record (2007).

[8] Jun Fujima, Aran Lunzer, Kasper Hornbæk, and Yuzuru Tanaka. 2004. C3W:
Clipping, Connecting and Cloning for the Web. In Proceedings of the 13th Inter-
national World Wide Web Conference on Alternate Track Papers & Posters (WWW
Alt.).

[9] Google. 2022. Activity. https://developer.android.com/reference/android/app/
Activity.

[10] Google. 2022. ARCore: Build new augmented reality experiences that seamlessly
blend the digital and physical worlds. https://developers.google.com/ar.

[11] Google. 2022. Create a simple widget. https://developer.android.com/guide/
topics/appwidgets.

[12] Google. 2022. Display. https://developer.android.com/reference/android/view/
Display.

[13] Google. 2022. Flutter: Build apps for any screen. https://flutter.dev/.
[14] Google. 2022. Multi-Resume. https://source.android.com/devices/tech/display/

multi_display/multi-resume.
[15] Google. 2022. Multi-window support. https://developer.android.com/guide/

topics/large-screens/multi-window-support.
[16] Google. 2022. Picture-in-picture (PiP) support. https://developer.android.com/

guide/topics/ui/picture-in-picture.
[17] Google. 2022. Profile battery usage with Batterystats and Battery Historian. https:

//developer.android.com/topic/performance/power/setup-battery-historian.
[18] Google. 2022. View. https://developer.android.com/reference/android/view/View.
[19] Donghwi Kim, Sooyoung Park, Jihoon Ko, Steven Y Ko, and Sung-Ju Lee. 2019.

X-Droid: A Quick and Easy Android Prototyping Framework with a Single-App
Illusion. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (UIST).

[20] Sunjae Lee, Hayeon Lee, Hoyoung Kim, Sangmin Lee, JeongWoon Choi, Yuseung
Lee, Seono Lee, AhyeonKim, Jean Young Song, SangeunOh, et al. 2021. FLUID-XP:
Flexible User Interface Distribution for Cross-Platform Experience. In Proceedings
of the 27th Annual International Conference on Mobile Computing and Networking
(MobiCom).

[21] Tong Li, Mingyang Zhang, Hancheng Cao, Yong Li, Sasu Tarkoma, and Pan Hui.
2020. ”What Apps Did You Use?”: Understanding the Long-Term Evolution of
Mobile App Usage. In Proceedings of The Web Conference 2020 (Taipei, Taiwan)
(WWW ’20). Association for Computing Machinery, New York, NY, USA, 66–76.
https://doi.org/10.1145/3366423.3380095

[22] Toby Jia-Jun Li, Amos Azaria, and Brad A Myers. 2017. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration. In Proceedings of the

2017 CHI Conference on Human Factors in Computing Systems (CHI).
[23] Lin, James and Wong, Jeffrey and Nichols, Jeffrey and Cypher, Allen and Lau,

Tessa A. 2009. End-User Programming of Mashups with Vegemite. In Proceedings
of the 14th International Conference on Intelligent User Interfaces (IUI).

[24] Microsoft. 2022. HoloLens: Mixed Reality Technology for Business. https:
//www.microsoft.com/hololens.

[25] Sangeun Oh, Ahyeon Kim, Sunjae Lee, Kilho Lee, Dae R Jeong, Steven Y Ko,
and Insik Shin. 2019. FLUID: Flexible User Interface Distribution for Ubiquitous
Multi-Device Interaction. In The 25th Annual International Conference on Mobile
Computing and Networking (MobiCom).

[26] Meta Platforms. 2022. React Native: Learn once, write anywhere. https:
//reactnative.dev/.

[27] Onur Sahin, Assel Aliyeva, Hariharan Mathavan, Ayse Coskun, and Manuel Egele.
2019. RANDR: Record and Replay for Android Applications via Targeted Runtime
Instrumentation. In Proceedings of the 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE).

[28] Samsung. 2022. Set up and use Bixby Routines on your Galaxy phone. https:
//www.samsung.com/us/support/answer/ANS00083201/.

[29] Samsung. 2022. Using the Smart Pop-Up View my Galaxy Phone. https://www.
samsung.com/au/support/mobile-devices/using-the-smart-pop-up-view/.

[30] Skia. 2022. Welcome to Skia: The 2D Graphics Library. https://skia.org/.
[31] Wolfgang Stuerzlinger, Olivier Chapuis, Dusty Phillips, and Nicolas Roussel. 2006.

User Interface Façades: Towards Fully Adaptable User Interfaces. In Proceedings
of the 19th Annual ACM Symposium on User Interface Software and Technology
(UIST).

[32] Desney S Tan, Brian Meyers, and Mary Czerwinski. 2004. WinCuts: Manipulating
Arbitrary Window Regions for More Effective Use of Screen Space. In Proceedings
of the Annual ACM Conference Extended Abstracts on Human Factors in Computing
Systems (CHI EA).

[33] Unity. 2022. Real-Time Development Platform. https://unity.com/.
[34] Jeffrey Wong and Jason I. Hong. 2007. Making Mashups with Marmite: Towards

End-User Programming for the Web. In Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems (CHI).

[35] Jian Xu, Qingqing Cao, Aditya Prakash, Aruna Balasubramanian, and Donald E
Porter. 2017. UIWear: Easily Adapting User Interfaces for Wearable Devices. In
Proceedings of the 23rd Annual International Conference on Mobile Computing and
Networking (MobiCom).

[36] Jian Xu, Suwen Zhu, Aruna Balasubramanian, Xiaojun Bi, and Roy Shilkrot. 2018.
Ultra-Low-Power Mode for Screenless Mobile Interaction. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology (UIST).

[37] Qiang Xu, Jeffrey Erman, Alexandre Gerber, Zhuoqing Mao, Jeffrey Pang, and
Shobha Venkataraman. 2011. Identifying Diverse Usage Behaviors of Smart-
phone Apps. In Proceedings of the 2011 ACM SIGCOMM Conference on Internet
Measurement Conference (IMC).

[38] Xiong Zhang and Philip J Guo. 2018. Fusion: Opportunistic Web Prototyping
with UI Mashups. In Proceedings of the 31st Annual ACM Symposium on User
Interface Software and Technology (UIST).

[39] Jiahuan Zheng, Xin Peng, Jiacheng Yang, Huaqian Cai, Gang Huang, Ying Zhang,
and Wenyun Zhao. 2017. CollaDroid: Automatic Augmentation of Android
Application with Lightweight Interactive Collaboration. In Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social Computing
(CSCW).

[40] Jiahuan Zheng, Liwei Shen, Xin Peng, Hongchi Zeng, and Wenyun Zhao. 2020.
MashReDroid: enabling end-user creation of Android mashups based on record
and replay. Science China Information Sciences 63, 10 (2020).

702

