
Adaptive Parzen Windowing on Mutual information
for Intermodal Non-rigid Image Registration

Jean Y. Song, Student Member, IEEE, Jeffrey A. Fessler, Fellow, IEEE, and Charles R. Meyer

Abstract—Mutual information is widely used as a similar-
ity metric for inter-modality image registration because of its
accuracy compared to other conventional metrics. However,
mutual information may lead to false registration result when
signal to noise ratios of given images are small or when local
statistics differ from global statistics. Therefore, we suggest a
novel adaptive Parzen windowing method to increase the accu-
racy of computing mutual information. The proposed method
adapts the window size to more accurately estimate the joint
density histogram by ensuring at least a minimum number of
local counts. Simulation results show that our adaptive Parzen
windowing method outperforms not only conventional mutual
information as computed via standard Parzen windowing but
also other similarity metrics designed to improve accuracy of
mutual information.

I. INTRODUCTION

MUTUAL information is a well-known similarity mea-
sure for registration of medical images. It is widely

used especially for inter-modality image registration because
of its robustness compared to other conventional metrics such
as cross-correlation and sum of squared intensity differences.
However, several authors [1]–[3] have reported that con-
ventional mutual information may lead to false registration
depending on overlap size. After Studeholme [1] suggested
normalized mutual information as an overlap invariant gen-
eralization of mutual information, August [2] and Cahill [3]
revisited the problem in rigid registration and suggested using
background or non-overlap voxels statistics to compensate for
the inaccuracy of mutual information due to changing overlap
size.

High degree of freedom (DOF) non-rigid image registration
is a challenging task. Applying mutual information to non-
rigid image registration is a challenge because local intensity
changes caused by imaging distortion may be poorly reflected
in global statistics. Others [4]–[6] have approached this prob-
lem by introducing spatial information as another channel of
information, but the complexity of such algorithms increase
their computational time.

In this paper, we describe both of these issues (overlap
size and local/global statistics mismatch) as a problem of
signal to noise ratio (SNR) of overlapping regions that can
be solved by efficiently filtering the estimate of the joint

Support by NIH NCI grant 1P01CA087634-11.
Jean Y. Song and Jeffrey A. Fessler are with the Department of Electrical

Engineering and Computer Science, University of Michigan, Ann Arbor, MI
48109 USA (e-mail: jyskwon@umich.edu, fessler@umich.edu).

Charles R. Meyer is with the Department of Radiology and the Department
of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
USA (e-mail:cmeyer@umich.edu).

density histogram (JDH). Then we propose a novel adaptive
Parzen windowing of JDH to improve the accuracy of mutual
information estimation as a similarity metric. The proposed
method adaptively chooses local window sizes for estimating
the JDH based on the local number of samples.

We use a single 2D chest CT scan to synthesize multi-
modal images and validate our method by a simple one DOF
rigid registration. Next, we randomly warp 2D chest CT scans
using thin-plate spline to synthesize an image with known
ground truth and validate our method using 32 DOF non-rigid
registration. Simulation results show that our proposed method
outperforms other similarity metrics by improving registration
accuracy with short computational time.

Section 2 interprets the problems using mutual information
as a similarity metric. Section 3 gives a detailed description
of our method. Section 4 presents simulation results and
discussion. Section 5 gives conclusions and future works.

II. INTERPRETATION OF THE PROBLEMS

The nature of mutual information can be interpreted based
on dispersion of JDH [7]. The more clustered JDH is, the
higher mutual information is, and the better the two images
are regarded to be registered. Typically JDH is estimated
by conventional Parzen windowing even though the SNRs
of the inputs may vary spatially. An extreme example of
such variation occurs in partially overlapping datasets where
noisy non-overlapping regions of poor signal strength yield
sparsely distributed Kronecker delta functions in the input’s
unfiltered JDH which are interpreted as regions of high mutual
information. In the optimization of such faulty mutual informa-
tion estimates the datasets are typically pulled further apart.
Picking Parzen window functions to be sufficiently wide to
prevent such behavior limits the sensitivity of the registration
only to large, global features, and thus negatively affects the
algorithm’s abilities to perform more local, higher DOF, non-
linear registrations. Therefore, we propose an adaptive Parzen
windowing method to adapt the window size to local SNR.

III. METHOD

Let IR(xR) and IF (xF ) be intensities of image R and
F . g(xR;µ) is the transformation field where µ represents
transformation parameters. JDH without any windowing can
be defined as

hg(r, f) ,
∑

xR∈DR

δ(IR(xR)− r)δ(IF (g(xR;µ))− f) (1)



where IR : DR → 0, 1, . . . , 2K and IF : DF → 0, 1, . . . , 2L.
δ(·) is the Kronecker delta:

δ(x) =

{
1, if x = 0,

0, otherwise.
(2)

We define wr,f ∈ 1, 3, 5, ...,M to be size of adaptive 2D
window for each JDH bin where M is the maximum window
width available. We also define a threshold value determined
by image size as T .

For each (r, f)-th bin, the window size is defined as follows.
Let wr,f =M .

h′g(r, f ;µ) ,
(wr,f−1)/2∑

i=−(wr,f−1)/2

(wr,f−1)/2∑
j=−(wr,f−1)/2

hg(r + i, f + j;µ)

(3)
=

∑
xR∈DR

W (IR(xR)− r;hg)W (IF (g(xR;µ))− f ;hg). (4)

If h′(r, f ;µ) ≥ T and wr,f > 1, then decrease wr,f =
wr,f − 2 and compute (2). Run this loop until h′(r, f ;µ) < T
or wr,f = 1. Then the final update of JDH bin is normalized
as h′g(r, f ; /mu) = h′g(r, f ;µ)/w

2
r,f .

The new JDH can be normalized as probability density
function as

pg(r, f ;µ) =
h′g(r, f ;µ)∑
r,f h

′
g(r, f ;µ)

. (5)

A. Mutual Information with Adaptive Parzen Windowing

The mutual information S(µ) of two images can be com-
puted as

S(µ) =
∑
r,f

pg(r, f ;µ)log
pg(r, f ;µ)

pg(r;µ)pg(f ;µ)
. (6)

IV. RESULTS AND DISCUSSION

To evaluate the proposed method we first demonstrate
simple one degree rigid body transformation and compare with
other similarity metrics [2], [3]. Next, we demonstrate high
degree non-rigid registration and compare with other similarity
metrics [2], [3], [5].

A. Experiment 1: Rigid Registration

This experiment used 2D chest CT image to visualize the
proposed similarity metric (5) in simple one degree translation
registration with known ground truth. Figure 1 (a) is the
reference image with size 86 × 256 and (b) is the floating
image with size 40 × 256. The floating image is a part of
the reference image but having inverse intensity. The two
images align exactly when the floating image translates 56
pixels upward in y-direction. Figure 1 (c) plots the similarity
measure as a function of y-directional translation. The floating
image translates from overlapping only with the bottom row of
reference image to only with the top row of reference image.
Five different similarity measures were compared. Conven-
tional mutual information, conventional mutual information

(a) reference image

(b) floating image

(c) similarity metrics changing according to 1D spatial translation.

Fig. 1. Synthesized example of inter-modality image registration based on
rigid geometric transformation. (a) is the reference and (b) is the floating
image. The floating image is a part of the reference image but having inverse
intensity. The two images align exactly when the floating image translates 56
pixels in the y-direction. (c) shows five similarity metrics changing according
to one dimensional translation (and the superimposed magnified peak), mutual
information, mutual information with Parzen window histogram estimation,
August’s non-overlap involving mutual information, Cahill’s modified mutual
information, and our proposed adaptive Parzen windowed mutual information.
A local maximum mutual information occurs where overlapping size of
two image is minimum (only one row), when floating image translates 124
pixels in the y-direction. Other four methods including our proposed method
suppressed false maximum at small overlap size. (d) shows the zoom

with Parzen window histogram estimation, August’s [2] non-
overlap involving mutual information, Cahill’s [3] modified
mutual information, and our proposed adaptive Parzen win-
dowed mutual information. As shown in Figure1 (c), mutual
information has limited capture range because of false local
maximum when only one row from each image overlaps. Other
four methods including our proposed method suppressed false
local maximum at small overlap size trying to extend the
capture range.

As shown in Table I the computational time is quite similar
for this simple one dimensional translation example. Next
section shows results from non-rigid registration.

TABLE I
COMPUTATIONAL TIME (MATLAB 2.93GHZ CPU) FOR 1D TRANSLATION

metric time
MI w/o filtering 11.08 sec

PW MI 11.75 sec
August’s MI 11.87 sec
Cahill’s MI 11.14 sec

Proposed APW MI 12.03 sec



B. Experiment 2: Non-rigid Registration

This experiment used 2D chest CT image to validate perfor-
mance of our proposed adaptive Parzen windowing method in
high DOF non-rigid registration with known ground truth. 40
image pairs were first normalized in 256 gray level. Figure2 (a)
is the reference image with size 256×256 and (b) is one of the
40 floating images with size 256× 256. Floating images were
random warps of the reference image using thin-plate spline
transformation, so the ground truth transformation parame-
ters were known. Sixteen gridded control points were used.
The non-rigid registration process was conducted using thin-
plate spline transformation. Figure2 (c) shows checkerboard
fusion of registered images using proposed adaptive Parzen
windowed mutual information.

We evaluated six different similarity metrics: Mutual in-
formation, mutual information with Parzen window histogram
estimation, August’s non-overlap involving mutual information
[2], Cahill’s modified mutual information [3], conditional
mutual information [5], and our proposed adaptive Parzen
windowed mutual information. For our proposed method, the
maximum window width was chosen to be W = 9, and
count threshold was chosen to be T = 37. Figure2 (d)
and (e) show box plots of warping index (WI) and average
intensity difference (AID) of registration results, respectively,
representing registration error. Warping index is the difference
between the calculated and true deformation field.

Figure2 (d) and (e) show that our proposed adaptive Parzen
windowing has the best registration accuracy for this study.
Note that, even for a perfect registration, the warping in-
dex might contain nonzero component within homogeneous
regions. TableII shows the computational time of all six
similarity metrics. Figure 2 and Table II, show that our pro-
posed method offers high accuracy registration with reasonable
computational time.

TABLE II
COMPUTATIONAL TIME (MATLAB 2.93GHZ CPU) FOR 16 DOF

NON-RIGID REGISTRATION

metric time
MI w/o filtering 110 sec

PW MI 700 sec
August’s MI 4638 sec
Cahill’s MI 656 sec

Conditioal MI 3165 sec
Proposed APW MI 633 sec

C. Discussion

In Experiment 1, conventional mutual information showed
false local maximum when overlap size of two images is the
smallest. This is because when few number of samples exist,
noise on either image can act like a cluster in JDH, ending up
increasing mutual information. Our proposed adaptive Parzen
window increases window size when there are few local counts
so that noise is smoothed out, while turning off Parzen window
when there are abundant local counts. This way, we could
maintain sharp transition peak near actual alignment without
over smoothing.

(a) reference image (b) floating image (c) checkerboard fusion

(d) warping index

(e) average intensity difference

Fig. 2. (a) is the reference image with size 256×256 and (b) is one of the 40
floating image with size 256×256. Floating images were random warp of the
reference image using thin-plate spline transformation. Sixteen gridded control
points were used. The non-rigid registration process was conducted using thin-
plate spline transformation with 16 control points. (c) shows checkerboard
fusion of registered images using proposed adaptive Parzen windowing on
mutual information. (d) and (e) shows box plot of warping index(WI) and
average intensity difference(AID) of registration results, respectively. Box
plots shows that our proposed method performs highest registration accuracy.

In Experiment 2, our adaptive filtering worked well in
non-rigid situation because applying different filter width in
different JDH pairs is interpreted as applying different filter
in different spatial location. This way, local statistics can
be reflected in calculating mutual information. Conditional
mutual information [5] also does this by spatially encoding
mutual information, but our proposed method requires less
computational time.



V. CONCLUSIONS AND FUTURE WORKS

In this paper, we compared the limitation of mutual infor-
mation similarity metrics based on dispersion of JDH and
signal to noise ratio of two images. We showed with a
simple one dimensional translation that our proposed adaptive
Parzen windowing method prevents false local maximum
of mutual information. We also showed that our proposed
method improves registration accuracy for high degree non-
rigid image registration. Compared to other state of the art
metrics, our proposed method yields better registration accu-
racy in comparatively fast computational time. In our future
work, we plan to investigate performance of similarity metrics
in noise by measuring objective functions peak curvature,
different maximum window size, and different count threshold
parameter. We also plan to apply our proposed approach to 3D
non-rigid image registration.
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