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Figure 1: In single-target VOT, the tracker must be initialized with a bounding box to designate which object to follow. Smart
minimizes the number of initializations for a target accuracy by allowing the re-query function to accept the first

initialization if it performs well, and allowing the selection function to choose between the first and second initialization if re-
queried.We see the importance of these functions above, where nearly identical initializations result in dramatically different
performances.
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ABSTRACT
In single-target video object tracking, an initial bounding box is
drawn around a target object and propagated through a video.
When this bounding box is provided by a careful human expert, it
is expected to yield strong overall tracking performance that can
be mimicked at scale by novice crowd workers with the help of
advanced quality control methods. However, we show through an
investigation of 900 crowdsourced initializations that such quality
control strategies are inadequate for this task in two major ways:
first, the high level of redundancy in these methods (e.g., averaging
multiple responses to reduce error) is unnecessary, as 23% of crowd-
sourced initializations perform just as well as the gold-standard
initialization. Second, even nearly perfect initializations can lead to
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degraded long-term performance due to the complexity of object
tracking. Considering these findings, we evaluate novel approaches
for automatically selecting bounding boxes to re-query, and intro-
duce Smart Replacement, an efficient method that decides whether
to use the crowdsourced replacement initialization.

CCS CONCEPTS
•Human-centered computing→ Interaction paradigms; • In-
formation systems→Crowdsourcing; •Computingmethod-
ologies→Artificial intelligence;Computer vision;Tracking.

KEYWORDS
crowd-AI collaboration, crowdsourcing, single-target video object
tracking, seed rejection, smart replacement

ACM Reference Format:
Stephan J. Lemmer, Jean Y. Song, and Jason J. Corso. 2021. Crowdsourcing
More Effective Initializations for Single-Target Trackers Through Automatic
Re-querying. In CHI Conference on Human Factors in Computing Systems
(CHI ’21), May 8–13, 2021, Yokohama, Japan. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3411764.3445181

https://doi.org/10.1145/3411764.3445181
https://doi.org/10.1145/3411764.3445181


CHI ’21, May 8–13, 2021, Yokohama, Japan Stephan J. Lemmer, Jean Y. Song, and Jason J. Corso

1 INTRODUCTION
Inference in single-target video object tracking (VOT) [83] begins
with an initialization in the form of a bounding box drawn around
a semantically meaningful area. This initialization is then prop-
agated through the remaining video frames despite occlusions,
deformations, rotations, and other visual phenomena. Like many
other computer vision tasks, remarkable improvement has been
shown on this task in recent years due to both the transition from
handcrafted features [5, 7, 68] to deep learning-based feature ex-
tractors [28, 44, 51, 79, 85] and the establishment of challenges and
formal benchmarks [36, 82].

However, like a number of other problems that use both a pri-
mary input—such as a video—and a secondary seed—such as a
bounding box initialization, evaluation assumes that all seeds match
the gold-standard [2], an assumption that may be erroneous. Such
problems include visual [2] and text [58] question answering, where
it is assumed that the seed—the question—always requests infor-
mation available in the primary input—the text document or im-
age, keypoint-conditioned viewpoint estimation [73], where it is
assumed that a given click always indicates the corresponding key-
point on the image, and others [6, 24, 26, 30, 32, 55, 60, 70, 72].
Critically, the assumption of a near gold-standard seed used in pre-
vious works neglects two important points: first, one must consider
not only the model’s robustness, but also the effect of individual
seeds on the output accuracy. Second, the assumption itself is in-
correct in cases where the seed is provided by novice annotators
(e.g., crowdsourcing), which is known to be less accurate than an
expert’s responses.

Because of this, the crowdsourcing literature has studied a num-
ber of agreement-based quality control methods such as simple
majority voting [2, 13, 15], expectation maximization-based aggre-
gation [31], and POMDP-based dynamic aggregation [12] to obtain
reliable responses. However, as we show in this work, these ap-
proaches are impractical when applied to inference-time seeds due
to both their focus on quality in only the input space (e.g., how well
the bounding box fits the target object), which does not directly
correlate to model performance, and the requirement of aggregat-
ing multiple Human Intelligence Tasks (HITs) for a single sample,
which is an unnecessary cost increase in the many cases where the
first acquired seed is sufficient.

We demonstrate the limitations of previous approaches through
an analysis of a state-of-the-art VOT model [85] initialized with
900 crowdsourced seeds—first-frame bounding boxes—across the
100 videos of the OTB-100 dataset [82]. Through this analysis, we
find that the correlation between initialization (seed) accuracy and
performance exists, but is not definitive, and that a number of
initializations (23.3%) do not need to be re-queried. This motivates
the creation of a method that maximizes the performance of a fixed
model for minimum number of crowd re-queries.

We begin by evaluating the method under the assumptions of
previous work in selective prediction [20] and seed rejection [41].
We then address the shortcomings of these assumptions, and shift
selective prediction and seed rejection firmly into the domain of
crowdsourcing by acknowledging that the replacement initializa-
tion may not be correct. To do this, we introduce the novel evalua-
tion metrics of Replacement Mean Additional Error (RMAE) and

Area under the Replacement Mean Error-coverage Curve (ARMAE),
as well as the Smart Replacement method shown in Figure 1. Criti-
cally, we find that re-query methods which perform best under the
assumptions of previous work do not provide the best results in
realistic crowdsourcing scenarios, a finding that is likely to gener-
alize to other VOT algorithms, as well as other problems which use
a crowdsourced seed when performing inference.

Explicitly stated, our contributions are as follows:
• The novel RMAE and ARMAE metrics for evaluating the
effectiveness of automatic re-querying methods when a per-
fect re-annotation cannot be assumed.

• Smart Replacement: An efficient crowd-AI hybrid method
that first re-queries seeds that it believes degrade model
performance, then chooses whether to use the original or
replacement seed.

• An analysis of the quality of crowdsourced bounding box
initializations and their effect on the downstream task of
single-target VOT, indicating the shortcomings of current
crowdsourcing methods and motivating the need for auto-
matic re-querying.

• An evaluation of re-query methods under assumptions of a
correct second seed, a crowdsourced second seed, and smart
replacement, motivating the need for our metrics and smart
replacement method.

2 BACKGROUND AND RELATEDWORK
While both single-target VOT and crowdsourcing bounding box
annotations are well explored tasks in their respective fields, to the
best of our knowledge, this is the first work to consider them jointly
in the context of inference. In this section we discuss these two tasks
independently, and how they relate to and differ from the problem
of rejecting initializations which degrade the performance of the
downstream task. Further, we discuss methods used for detecting
inputs that have a high likelihood of being classified incorrectly,
and how their goals differ from the goals of the presented work,
as well as how our novel idea of smart replacement contributes to
current research on crowd-AI collaboration.

2.1 Single-Target VOT
As the task of single-target VOT has a long history in the com-
puter vision literature, a number of solutions have been proposed.
Early work focused on handcrafted local features [5, 7, 68], while
more recent works implement deep learning-based approaches
through fine-turning the network at inference time [44, 51, 79],
asking the network to directly regress bounding box location [28],
or placing template and search images in a common feature space
[4, 43]. Our experiments are performed using a method from the lat-
ter category, Distractor-Aware Siamese Region Proposal Network
(DaSiamRPN) [85], which won the short-term real-time category
of the 2018 VOT challenge [34] by improving the negative mining
strategy used to create the common feature space of the Siamese
Region Proposal Network [43].

To accompany the wide variety of proposed solutions to single-
target VOT, a number of evaluation methods have been proposed.
Basic metrics have included center error [3], region overlap [23],
tracking length [38], failure rate [33], and others [84]. Combinations
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of these metrics have been brought together to provide standardized
benchmarks by works such as the VOT Challenge [36] and Online
Object Tracking Benchmark (OTB) [82]. Aside from standardizing
comparisons between single-target VOT works, these benchmarks
are notable in the context of this work, as they both acknowledge
the potential for small perturbations in the initialization to have an
effect on the quality of the returned track. Both test this by allowing
shifts of±10% of the bounding box’s size and aggregating the results
across numerous samples on a baseline, with OTB additionally
varying the frame used for initialization.

While these experiments provide insight into the performance
of various trackers with perturbed initializations, there are two
major shortcomings which indicate the need for a different evalua-
tion: first, these works assume that the perturbations are relatively
small, and become smaller as the target object becomes smaller.
This ignores both the noisy process of crowdsourcing, and the fact
that previous work [62] finds annotation error in pixels tends to
remain constant as the size of the object changes. Further, while
analyzing aggregate performance on perturbed seeds is effective for
evaluating tracker robustness, selecting initializations to re-query
requires focus on individual object tracks.

2.2 Crowdsourcing Strategies for Collecting
Bounding-Box Annotations

The most common goal of generating bounding boxes has been
the construction of datasets for training and evaluating computer
vision models. Unlike acquiring initializations for inference, this
goal allows high-cost, multi-stage crowdsourcing methods, as the
cost is spread over many experiments and deployments. For ex-
ample, the widely cited—over 11,000 times at the time of writing—
Microsoft Common Objects in Context (MSCOCO) [45] dataset
uses a three-stage review process: in the first stage, multiple work-
ers are asked to determine which object classes are present in an
image and label one instance of each object class. In the second
stage, multiple workers are then asked to mark all instances of
those classes. In the last stage, a single worker who has passed
a qualification task segments each previously identified instance.
These segmentations are then reviewed by multiple workers to
ensure quality, and bounding boxes are created by fitting to the
segmentations. A similarly complex approach was taking when
producing the YouTube-BoundingBoxes dataset [59], which was
used to automatically generate the TrackingNet VOT dataset [49].

Due to the difficulty of procuring high-quality bounding box data
through crowdsourcing, some authors choose instead to have all
annotations performed under their direct supervision. One notable
instance of this is the Pascal Video Object Classes dataset [16], for
which all bounding boxes were drawn at a single “annotation party”.
This approach is particularly common in the VOT domain, as most
works contributed relatively few videos which were later combined
into large datasets [5, 18, 36, 39, 48, 56, 61, 65, 66, 82].

While the high accuracy demanded of a dataset justifies complex,
expensive, multi-step review processes, a number of works have
been proposed to reduce the number of review steps by ranking
received annotations in the input space [64, 77] or making the anno-
tation process itself simpler or more accurate through approaches
such as a hybrid intelligence [53] or a more intuitive interfaces [54].

Critically, however, these methods are designed to maximize accu-
racy in the input space, where a re-query method must focus on
the accuracy of the downstream task. As we show in Section 3.3,
these do not always directly correspond.

2.3 Automatic Identification of Poor Quality
Input

While the crowdsourcing literature does not typically evaluate the
quality of crowdsourced annotations based on their effect on the
downstream task, there exists a body of work called “selective
prediction”, which selects difficult inputs—such as images in a clas-
sification task—to refer to an oracle annotator. This line of work has
been around since the early days of automatic classification [10, 29],
and has evolved alongside the various methods for automatic clas-
sification from support vector machines [19] to ensembling [76] to
boosting [11] to deep neural networks [20]. Since selective predic-
tion has a focus on provable optimality [10, 67, 75] or establishing
bounds [20, 22, 76], the majority of the work has been done in
the more mathematically-tractable classification domain, though
Geifman & El-Yaniv empirically demonstrate performance of their
SelectiveNet architecture on a regression task [21].

In parallel, some work has focused on the medical domain for
selective prediction, noting the danger of misdiagnosis [40, 47, 50,
57, 74]. While this problem space does not establish the same math-
ematical rigor due to its focus on an application, the problems are
generally still solved with a categorical classification.

We extend upon the works of selective prediction in several ways:
first, we perform the task of single-target VOT, to which selective
prediction has not been applied. Second, we focus not on finding
the worst overall prediction, but re-querying seeds where the given
initialization performs worse than the best possible performance
for the primary input. Last, and most important, we remove the
assumption used in these works that the potentially incorrect seed
will always be replaced by a perfect one, moving these tasks firmly
into the crowdsourcing domain.

2.4 Crowd-AI Collaboration
Intelligent systems designed to assist humans in decision making
are a concept which is well understood by the general public, HCI
practitioners, and AI practitioners alike. Such systems have been
proposed in domains as varied as medical diagnosis [8], fact check-
ing [52], text classification [37], and topic modeling [69]. The other
direction of interaction, in which a human assists the AI model
by providing information outside of its perceptual capability, is
less well known but no less important. The human-provided infor-
mation may be used to improve training of the model or provide
information to assist inference.

Works in which humans provide information for training the
model include AnchorViz [9], which demonstrates how users can
help machines learn semantic concepts through example-based
anchors, and ModelTracker [1], in which the user and an AI collab-
oratively examine and debug model performance through a visual-
ization tool. Works in which the human provides information to
help with inference include TARS [14], which cleans crowdsourced
labels through an automatic oracle, Foureyes [71], which improves
annotation accuracy in an image segmentation task by using an
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Task Instructions Annotation Interface

Figure 2: The instructions (left) and interface (right) provided to crowd workers for the bounding box annotation. Work-
ers are given vertical and horizontal guidelines to assist in bounding box construction. Instruction images were taken from
CelebA [46] and the ImageNet Large Scale Visual Recognition Challenge [62].

expectation-maximization based aggregation method to combine
crowd responses from different interfaces, and C-reference [70],
which uses the crowd’s rough estimates to narrow the search space
for optimization.

Like the previously mentioned works, single-target VOT requires
the crowd worker to provide information that the AI model is un-
able to determine on its own; specifically, the object which should be
tracked. This work contributes to the line of research on crowd-AI
collaboration in two notable ways: first, it removes the assump-
tion that the model will perform correctly when given a seed that
is correct in the input space, which has been shown to be incor-
rect in some tasks [41]. Second, we do not focus on optimizing
the performance of a model, but instead on how to determine if
the information given by the human helps the model and if it is
necessary to re-query.

3 QUALITY AND EFFECTS OF
CROWDSOURCED INITIALIZATIONS

While some methods used for comparing and evaluating single-
target trackers [36, 82] analyze the sensitivity to noise in the ini-
tialization, this is done to evaluate model robustness to small per-
turbations around the gold-standard initialization. This evaluation
provides results that neither accurately reflect the characteristics of
real-world initializations nor provide the specificity to understand
the re-querying problem. In this section, we augment this simplistic
evaluation by discussing the distribution of crowdsourced bound-
ing box initializations, failure modes, and the initialization’s effect
on the output of the DaSiamRPN model. Through this, we show

that most of the initializations are high quality, many of those of ap-
parent poor quality are actually initializations around an incorrect
object, and the fact that a seed has a high IoUwith the gold-standard
on the first frame does not mean that it will produce a high-quality
object track (and vice-versa).

3.1 Data Collection
Using the interface and instructions shown in Figure 2, we ask
workers on AmazonMechanical Turk to provide an initial bounding
box based on a text description of the target object. We request
nine annotations for each of the 100 videos of the OTB-100 dataset
and limit each annotator to one bounding box per video, but do
not require that every annotator annotate all videos. Annotators
are paid $0.06 per bounding box drawn, which extrapolates to
approximately $12/hr based on timed data collections performed
by the authors. All annotators were located in the United States.

Since bounding box annotations are a common task for crowd
workers, we did not perform a qualification task. Instead, we filtered
results from inattentive annotators through comparison with the
known gold-standard. For this filteringmethod, we defined a correct
annotation as one which has an IoU of greater than 0.5, consistent
with designations used in object detection [16, 62, 63]. Annotators
for whom more than 15% of annotations are incorrect have their
annotations removed from the evaluation set, a threshold chosen
based on the fact that we found all annotators had an error rate
of less than 15% or greater than 49%. While filtering through a
comparison with the gold-standard initialization is not possible
during deployment, an analysis of annotation statistics suggests
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Figure 3: The histogram of first-frame IoU scores between
crowdsourced and gold-standard annotations after prefilter-
ing. 93.1% of annotations have an IoU greater than or equal
to 0.5, corresponding to a successful detection in the litera-
ture [16, 62, 63].

that a simple attention check could identify a good annotator with
greater that 94% accuracy with one gold-standard bounding box,
and 98% with two gold-standard bounding boxes.

Overall, 26 unique annotators returned 899 of the 900 HITs with
bounding boxes. Four annotators annotated more than 90 images,
while 14 annotated less than 20 images. Our filtering process re-
sulted in the elimination of four annotators who drew a combined 41
initial bounding boxes, resulting in our evaluation being performed
on 858 annotations.

3.2 Image-Space Quality of Bounding-Box
Annotations

While our filtering method eliminated inattentive or malicious
workers, attentive workers still occasionally make mistakes, lead-
ing to the various consensus and review methods discussed in
Section 2.2. In Figure 3, we show the distribution of agreement be-
tween the annotator initialization and gold standard initialization in
terms of IoU. Overall, we find that 93.1% of the filtered annotations
meet our definition of correct by having an IoU greater than 0.5, and
most (55.4%) have an IoU with the gold-standard between 0.7 and
0.9. While a relatively small percentage (8.9%) fall within the top
range of 0.9-1.0, previous work [36] has suggested that bounding
boxes do not need to have an IoU near 1 to be perceptually similar,
which we illustrate in Figure 4. Of the 858 accepted annotations, we
examine the 59 annotations which meet our definition of incorrect
to determine the failure modes of the human annotators. Broadly,
we find the failure modes fit into the three categories shown in
Figure 5: misidentified target, wrong region on target, and poorly fit.
Overall, 15 (25.4%) were a misidentified target, 28 (47.5%) identified
the wrong region of the target, and 16 (27.1%) were poorly fit.

IoU: 0.18 IoU: 0.41

IoU: 0.60 IoU: 0.80

Figure 4: Example bounding boxes, showing perceptual sim-
ilarity of various IoUs.

3.3 Effect of Initialization on Tracker
Performance

Unlike previous crowdsourcing work which focuses solely on the
quality of the initialization with respect to the image, we focus on
the quality of the initialization with respect to the task of single-
target VOT. This means that in addition to the input-space quality
analysis performed in the previous section, we need to evaluate the
relationship between the quality of the seed in the input space and
the quality of the resulting object track.

One critical element in this relationship is the effect of the the
three types of incorrect annotations described in the previous sec-
tion. In the case of a poor fit, the task is defined appropriately, but
the bounding box is too small, too large, or offset in such a way that
the tracker receives a different set of features to match in subse-
quent frames. Based on the quality of these features, the video, and
the tracker, this may result in anything from a significant degrada-
tion to a significant improvement over a gold-standard initialization.
An ideal re-query mechanism would be able to determine the effect
of the poor fit on the downstream task. The other two failure modes

...all parts of the sprinter in lane 4.

Misidentified Target: Wrong Region on Target:

...the Clif bar

Poorly Fit:

...all parts of the person in 
the far right of the image.

Figure 5: Examples of the three categories of annotation er-
ror. The red box represents the crowdsourced initialization,
the green box represents the gold-standard initialization.
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Frame 0: AE=1.00 Frame 25: AE=0.72 Frame 50: AE=0.60 Frame 174: AE=0.16

Figure 6: Calculating additional error exclusively on valid
frames produces a more meaningful evaluation metric. De-
spite the candidate initialization (red) tracking a different
object than the gold-standard initialization (yellow), addi-
tional error is low when all 174 frames are used, but high
if only valid frames (frames 0-50) are used.

produce an object track that is substantially different from the tar-
get object track, but still follows a meaningful semantic object. That
is, the tracker may do its task well, but it was told to do the wrong
task. This makes it impossible for an automated system to detect
these failure modes without prior understanding of objects that are
typically tracked.

While only 16 of our 858 (1.9%) accepted annotations are incor-
rect in a way that is detectable, we again highlight the fact that
an initialization should not be re-queried based on its quality in
the input space, but instead how it affects the performance on the
downstream task. As we see in Figure 1, these two are not always
the same. Throughout the remainder of this section, we will discuss
the agreement (or lack thereof) between these two metrics, and
how it affects the task of re-querying initializations.

3.3.1 Metric. In order to quantify the effect of the initialization
on subsequent frames, we use the additional error [41]. This met-
ric compares the performance of the model when given the gold-
standard initialization with the performance of the model when
given a candidate—in this case, crowdsourced—initialization. No-
tably, it addresses the need to separate inferences that are per-
formed poorly due to a bad initialization from inferences that are
performed poorly due to a difficult video by designating that the
gold-standard initialization provides the best possible performance.
This is enforced by constraining additional error to be greater than
or equal to zero. We further enforce this constraint in the single-
target VOT task by finding the frame where a tracker initialized
with the gold-standard seed no longer has any overlap with the
gold-standard frame-by-frame annotation. Similar to the designa-
tion of valid frames used by Kristan et al. [36], frames prior to this
zero-intersect frame are considered valid and used in our additional
error calculation. We can see the effect of designating frames after
a lost gold-standard track as invalid in Figure 6, where processing
on invalid frames results in a relatively low additional error, despite
the candidate initialization having zero IoU with the gold-standard.

Put together, this gives the formula for additional error in single-
target VOT: (

1 ∑Nv n n
дs 1 ∑Nt ∩ t v n n

t t ∩ tt c
AE(Tt ,Tдs ,Tc ) =max − , 0 .n n n nNv t ∪ tt д N

n 1 s v t t
= n=1 ∪t c

(1)

)

In this equation, nt represents the bounding box around the target
at the thn frame of the object track given byT . The object track may

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Start IoU (binned)

0.0

0.2

0.4

0.6

0.8

1.0

Ad
di

tio
na

l E
rro

r

Successful Initialization, Poor Performance

Figure 7: The IoU of the crowdsourced initializationwith the
gold-standard initialization is not the sole determining fac-
tor in an initialization’s performance, as evidenced by suc-
cessful initializations with poor performance.

be obtained by using the gold-standard per-frame target annotation
(Tt ), running the object tracker with the gold standard initialization
(Tдs ), or running the object tracker with the crowdsourced candi-
date initialization (Tc ). Nv represents the number of valid frames
in the video.

3.3.2 Effect of Initialization on Performance. In Figure 7, we show
the relationship between the IoU of the crowdsourced and gold-
standard initializations and additional error, and draw two conclu-
sions: first, following current HCI methods which accept or reject
an initialization based entirely on the input space (i.e., first-frame
IoU) will re-query many initializations that are acceptable and miss
many that should be re-queried. This observation is due not only to
outliers at high initialization IoUs, but also to substantial overlaps
within inliers. For example, the additional error at the third quartile
of the 0.7-0.8 IoU bin is near the median of the 0.6-0.7 IoU bin,
meaning that it is better to re-query the worst quarter of the 0.7-0.8
bin before the best half of the 0.6-0.7 bin.

Second, we see that the second quartile begins at zero additional
error for the highest three start IoU bins, and at approximately 0.005
for the fourth highest start IoU bin. In total, 200 of our 858 (23.3%)
annotations result in no additional error. We also calculate this
value using one randomly chosen initialization per video, repeated
for 1000 trials. Under this scenario, an average of 22.93% (σ = 2.75%)
of initializations result in no additional error.

These two findings support the idea that using crowdsourcing
strategies which focus on the quality of the initialization in the
input space will not perform optimally when the goal is to produce
the best possible output. This is for two reasons: first, annotations
that appear good in the input space may still cause significant error on
the downstream task. Second, requiring multiple touches for every
datapoint is an unnecessary expense, as about 23% of initializations
cause no additional error.
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4 RE-QUERYING WITH ORACLE
REPLACEMENT

In the previous section, we examined the characteristics of crowd-
sourced initializations, and showed thatmethodswhich focus on the
accuracy in the input space—analogous to current HCI methods—
will both re-query initializations that should not be re-queried, and
accept initializations that should. This motivates the development
of a novel method to determine when to re-query an initialization
in single-target VOT. In this work, we assume that the decision
to re-query an initialization is made by thresholding on a scoring
function and consider four scoring functions:

(1) Tracker Confidence: The Distractor-Aware Siamese Region
Proposal Network architecture [85] that we use for our ex-
periments returns a confidence score, which corresponds
to the confidence that a bounding box contains the object
which is being tracked. In the tracking algorithm, this score
is used to select between potential bounding boxes, as well
as to determine when a track has been lost and re-acquired
for long-term tracking. We use the mean of this tracking
score over all valid video frames to produce a single metric.

(2) Regression of per-frame IoU: While it is not tractable to train
a model to predict the additional error directly due to the
large number of non-parallelizable inferences that would
need to be performed for a train step, it is possible to predict
the IoU of a bounding box on a given frame, similar to the
work of Gurari et al. [25]. We formulate this regression as
a classification problem that attempts to predict which of
10 evenly spaced IoU bins the bounding box has with the
gold-standard, which is hidden from the classifier. We use a
pretrained ResNet-18 [27] backbone, add a fourth input chan-
nel which accepts a binary mask representing the candidate
bounding box, and train the model using perturbed bound-
ing boxes on the MSCOCO [45] dataset. The predicted IoU
on a single frame is the mean of the classifier’s output distri-
bution, while the re-query score is the mean of predictions
across all valid frames.

AMAE Standard Error
Combined C+I 0.06541 0.000388
IoU Regression 0.08178 0.000480
Cycle Consistency 0.06735 0.000379
Tracker Confidence 0.07070 0.000357

Table 1: AMAE of evaluated re-query functions.

(3) Cycle Consistency: Proposed by Wu et al. [81] to evaluate
trackers without a ground-truth annotation, cycle consis-
tency appends the reversed video to the end of the forward
video, and runs the tracker across this forward-backward
video. The final bounding box is compared with the ini-
tial bounding box, and the more they agree, the higher the
predicted quality of the track. The original work used the
distance between the prior and posterior densities as the
comparison, but since this is not compatible with modern
methods, we use the IoU between the initial and final bound-
ing boxes.

(4) Cycle Consistency + IoU Regression (Combined C+I): The
cycle consistency score discussed above has a lower bound
of zero, which occurs for any initialization for which the
track is lost. This means that no distinction is made between
tracks that are lost early in the video and tracks that are lost
late. To compensate for this, we separate cycle consistency
scores into “hit” and “miss” bins based on the previously
defined threshold of 0.5. The hit bin is accepted in order of
the cycle consistency score, then the miss bin is accepted in
the order given by the IoU regressor.

To calculate the performance of a re-query function we use the
mean additional error [41], which corresponds to the mean of the
additional error for a set of accepted samples from dataset D:

1 ∑
(x, , ,Tt , ,

|D | T (, E(Tt Tдs Tc )∈D д x Tc )A дs Tc )
MAE(д,D) = 1 ∑ . (2)

|D (| x,Tc )∈D д(x ,Tc )

Here, the additional error, AE, is given by Equation 1. д is our re-
query function, which uses the video, x , and object track generated
using the candidate seed, Tc , to decide whether to accept the ini-
tialization by returning a one or select it for re-query by returning
a zero. Since the re-query function is implemented by applying a
threshold to a continuous scoring function, we also have the mea-
surement of coverage, which is the proportion of seeds which are
accepted. Due to the relationship between coverage and MAE, our
analysis shows the mean additional error at every coverage, and
uses the area under that curve—the area under the MAE-Coverage
curve (AMAE)—to find a single value for comparison between dif-
ferent methods.

Since we collect nine initializations for every video, and the
AMAE metric requires one initialization for each of the 100 videos,
we take 1,000 samples of the approximately 9100 potential combi-
nations of initializations. These samples are then used to calculate
the mean and standard error of the evaluated re-query functions.

We see in Table 1 that the Combined C+I method outperforms
all other methods due to the complementary behavior of the IoU
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Figure 9: TheRMAEwhen the second initialization is always
used (Naive Replacement). Note the low RMAE near 85% cov-
erage, where the worst seeds are being replaced, and the re-
placements have a high likelihood of improving the result.

regressor and the cycle consistency metric, which can be seen in
Figure 8. The high performance of the cycle consistency metric
at low coverages means that it can effectively determine when a
track is good, but it does not maintain the high level of perfor-
mance through higher coverages. In short, if the IoU between the
initialization and final bounding boxes is very high, the track is
guaranteed to be high quality, but if it is not, the quality of the track
is estimated poorly.

In contrast, the IoU regression can not distinguish well between
tracks which are high quality and tracks which are medium quality,
leading to poor performance low coverages. However, this metric
does have the ability to detect the exact frame at which the track is
lost, or if the track is lost and recovered. This translates to a strong
ability to discriminate between the high-error initializations which
the cycle consistency metric groups together.

5 SMART REPLACEMENT: RE-QUERYING
WITH CROWD REPLACEMENT

The previous section makes the implicit assumption that once a
poor initialization has been found, it will be corrected perfectly by
an oracle annotator. While this assumption is used in previous work
(Section 2.3), it is inappropriate for the case where the re-query may
result in worse performance than the initialization it was meant
to replace. In this section, we introduce smart replacement and the
related ReplacementMeanAdditional Error (RMAE) andArea under
the Replacement Mean Additional Error curve (ARMAE) metrics.
We first use these metrics to highlight the importance of smart
replacement via an evaluation of model performance when the re-
queried seed is always used (naive replacement). Next, we compare
several potential scoring functions under the assumption that the
same scoring function is used for both the re-query and selection
functions. Last, we compare the performance of different re-query
functions when the same scoring function is used for selection
and find that despite the apparent complementary abilities of the

ARMAE Standard Error
Combined C+I 0.08710 0.000261
IoU Regression 0.08792 0.000252
Cycle Consistency 0.08839 0.000265
Tracker Confidence 0.08896 0.000263

Table 2: ARMAE of re-query methods when the second ini
tialization is always used (Naive Replacement).

-

different methods, the same method still provides the best overall
smart replacement performance.

Smart Replacement and RMAE. In order to produce a system that
performs well when the re-query returns a noisy seed, we introduce
smart replacement, which adds a selection function to the re-query
function. Like the re-query function, the selection function makes a
binary decision based on the output of a scoring function. However,
while the re-query function applies a threshold to the output of the
scoring function, the selection function directly compares scores
to choose between two potential initializations. We evaluate the
combined performance of our re-query and selection functions
using a novel metric, replacement mean additional error (RMAE).
Unlike the MAE, the RMAE is calculated using additional error
from all videos regardless of the output of the re-query function,
and takes into account the performance of both the first seed and
the seed received after re-query.

More precisely, we have a re-query function, д, and a selection
function h, which operate on the object track created from the first
initialization, Tc1, and the object track created from the second
initialization, T . The RMAE is then:c2

RMAE(д,h,D) =

1 ∑
д(x ,Tc1)AE(Tt ,Tдs ,Tc1)+

|D|
(x,Tt ,Tдs ,Tc1,Tc2)∈D (3)

(1 − д(x ,Tc1))(h(x ,Tc1,Tc2)AE(Tt ,Tдs ,Tc1)+

(1 − h(x ,T ,T ))AE(T ,T ,T )) ,c1 c2 t дs c2

Intuitively, this metric represents a choice between three options
for each datapoint in D: if the first seed is accepted, д(x ,Tc1) = 1
and the additional error from the first seed contributes to the RMAE.
If the first seed is re-queried, 1 − д(x ,Tc1) = 1 and the selection
function is used to choose which additional error contributes to
the RMAE. If h(x ,Tc1,Tc2) = 1, the first initialization is used in the
RMAE calculation, whereas if 1−h(x ,Tc1,Tc2) = 1 the replacement
initialization is used.

Naive Replacement. To illustrate the importance of this met-
ric and the selection function, we evaluate our re-query func-
tions using our RMAE-based metrics and compare the results
to those obtained when an oracle re-query is assumed. We do
not implement a selection function for this experiment, meaning
h(x ,Tc1,Tc2) = 0 ∀ (x ,Tc1,Tc2) ∈ D. Similar to the previous eval-
uation, we perform our analysis on 1,000 randomly drawn sets of
initializations. However, instead of selecting one initialization per
video, we select two initializations per video without replacement
corresponding to the original query (Tc1) and the re-query (Tc2).
The results of this evaluation are shown in Figure 9 and Table 2.
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Figure 10: RMAE-Coverage curves for the case where the re-
query and selection functions are the same.

As expected, the ARMAE is substantially higher than the AMAE,
as there is additional error contributed by the replacement seeds
that is not considered when calculating the AMAE. Under the new
assumptions, the combined C+I scoring function still performs best,
though the IoU regressor now outperforms the cycle consistency
score on the mean. We speculate that this is due to the fact that
cycle consistency is excellent at detecting lost tracks, which are
often related to qualities of the video, such as occlusion, motion blur,
fast motion, and others. Due to this, there is a high likelihood that
replacing an initialization that causes a lost track will still result
in a lost track. The IoU regressor, on the other hand, detects lost
tracks less reliably than the cycle consistency metric, but is more
sensitive to failure modes that are video independent, meaning the
samples it re-queries first are highly likely to benefit from being
replaced.

We also note that three of our four methods have minima near
85% coverage. At this high coverage, these methods identify poorly
performing initializations well, which results in replacement ini-
tializations having a high likelihood of outperforming the first ini-
tialization. As the coverage decreases (we replace more and better
initializations), it is no longer a near guarantee that the replacement
initialization will provide better performance, and the replacement
initializations may perform worse than the initialization they were
meant to replace. This is further supported by the fact that cycle
consistency is the sole re-query function which does not have this
minimum, since it does not have any discriminative power within
the 20% of samples for which it returns a score of zero.

ARMAE Standard Error
Combined C+I 0.08600 0.000296
IoU Regression 0.08796 0.000282
Cycle Consistency 0.08843 0.000305
Tracker Confidence 0.08205 0.000291

Table 3: ARMAE of various smart replacement methods,
where the re-query and selection functions are the same.
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Figure 11: RMAE-Coverage curves for the casewhere tracker
confidence is used as the selection function.

Matching Re-query and Selection Functions. For the first evalu-
ation of smart replacement, we use the same scoring function for
both the re-query (д) and selection (h) functions. We see the re-
sults of this in Figure 10 and Table 3. We note that IoU regression
and cycle consistency do not perform significantly better using a
selection function, while the C+I and Tracker Confidence meth-
ods do, demonstrating that a scoring function that can effectively
differentiate between absolute performance of initializations on
different videos—its inter-video discrimination—may not effectively
differentiate between performances of initializations on a single
video—its intra-video discrimination—and vice-versa.

In the case of the two methods that do not improve their ARMAE
significantly using smart replacement, we see that they do outper-
form naive replacement at zero coverage, where every initialization
has two options. However, their intra-video discrimination is so
weak that the cases which cause the dips seen at high coverages
in Figure 9 may not necessarily be replaced by the new annota-
tion, leading to a higher overall ARMAE. In contrast, while the
tracker confidence is a poor performer under the assumptions of
Section 4 due to its poor inter-video discriminative ability, its strong
intra-video discriminitive ability makes it the best performing scor-
ing function under the assumption that the second seed will be
provided by a crowd worker.

Tracker Confidence as Universal Selection Function. After observ-
ing that tracker confidence has the best intra-video discriminative
ability, we remove the assumption that the re-query and selection
functions are identical and use tracker confidence as our selection

ARMAE Standard Error
Combined C+I 0.08269 0.000294
IoU Regression 0.08351 0.000290
Cycle Consistency 0.08294 0.000289
Tracker Confidence 0.08205 0.000291

Table 4: ARMAE of various re-query functions where the
tracker confidence is used as the selection function.
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function for all re-query functions. Ideally, this combines the best
inter-video performance (combined C+I) with the best intra-video
performance (tracker confidence) to create the best overall perfor-
mance. However, as we see in Figure 11 and Table 4, this is not the
case.

While the all of the methods are significantly improved by using
tracker confidence as the selection function, using the tracker con-
fidence as both the re-query and selection functions outperforms
the other combinations despite the combination’s ostensibly poorer
inter-video performance. This suggests that the tracker confidence
not only determines the better of two object tracks on a video, but
also re-queries initializations on videos for which it can effectively
differentiate between good and bad initializations.

The fact that the best re-query and selection function under the
more realistic assumptions of this section was a poor performer
under the assumptions of previous works highlights the impor-
tance of the RMAE-based metrics in a crowdsourcing scenario. In
short, if we use the Combined C+I method which is best under
the assumptions of previous works, we receive suboptimal perfor-
mance when replacing bad initializations with other crowdsourced
initializations.

6 DISCUSSION
In this work, we addressed the task of re-querying crowdsourced
seeds, as motivated by single-target VOT. To demonstrate the short-
comings of current crowdsourcing methods on this task, we per-
formed an evaluation of 900 crowdsourced initializations and found
that while most initializations met our definition of good in the
input space, a good initialization does not guarantee a good out-
come. This shows that current methods used for crowdsourcing are
insufficient, as they will both re-query initializations that shouldn’t
be re-queried, and accept initializations that should.

On this task, we also show that current evaluation methods are
unable to effectively capture the reality that a crowdsourced re-
placement seed may not improve performance, an assumption that
is used extensively in previous work. To address this, we develop
a novel evaluation method based on the Replacement Mean Addi-
tional Error (RMAE) metric, and use it to evaluate four re-query
and selection functions: tracker confidence, regression of per-frame
IoU, cycle consistency, and cycle consistency combined with IoU
regression. Critically, we find that the method which provides the
best performance under the more realistic assumptions of our work
does not provide the best performance under the assumptions of
previous work, illustrating the importance of our novel RMAE and
ARMAE metrics.

The findings of this work have applications to both other track-
ing algorithms and other tasks which rely on a crowdsourced seed.
With respect to other object tracking algorithms, the best re-query
and selection functions are specific to the DaSiamRPN architec-
ture [85] which has a number of derivatives [17, 42, 78, 80] that
in general produce state-of-the-art results on recent object track-
ing challenges [35]. For significantly different architectures, the
re-query and selection functions will respond to the same failure
modes, but these architectures may be more susceptible to differ-
ent failure modes. It follows that these experiments outlined in

this paper can be repeated with the different tracking algorithm to
determine the best scoring function.

In addition, as other work [41] shows similarly complex relation-
ships between the input seed and output accuracy in other tasks, we
believe three of the fundamental findings of this work will extend
outside of the task of video object tracking: the high redundancy
of current crowdsourcing methods when applied to this task is an
unnecessary cost, that it is insufficient to optimize in the input
space only, and that the assumptions of a clean replacement, and
thus metrics, used in seed rejection and selective prediction are
not valid in the crowdsourcing domain. It follows that by defining
appropriate scoring functions and a measure of additional error,
smart replacement can be used on a variety of tasks, including
visual [2] and text [58] question answering, keypoint-conditioned
viewpoint estimation [73], hierarchical scene classification [32],
and pose estimation with dimension lines [72].

One major limitation of this study is the assumption that the
gold-standard initialization provides optimal performance. As in
previous work [41], we compare performance of the candidate
initialization to the gold-standard initialization to encourage the re-
query mechanism to select videos which would be improved by re-
query, as opposed to videos for which there exists no initialization
which performs well. Unlike previous work, however, single-target
VOT has no single correct seed, which means that the gold-standard
initialization might not match the optimal initialization. This means
that some of the videos evaluation assumes cannot be improved
may still have room for improvement.

7 CONCLUSION
In this work, we addressed re-querying crowdsourced seeds, as mo-
tivated by the task of single-target video object tracking. The need
for this was shown through an evaluation of 900 crowdsourced
initializations and their effect on the quality of the corresponding
track, which demonstrated that current crowdsourcing methods
would both re-query initializations that should not be re-queried,
and accept initializations that should. We then explored methods
for selecting seeds to re-query, and introduced novel metrics that
reflect a more realistic crowdsourcing scenario. Critically, we find
that methods which perform the best under previous assumptions—
namely that the re-query results in optimal performance—do not
necessarily perform best under metrics which account for the qual-
ity of the re-initialization. Further, while the evaluation focuses
on one implementation of the task of single-target VOT, we dis-
cuss the extensibility of our procedures to other tasks. Overall, we
believe these findings will be critical in reducing the number of
queries—and therefore the cost—for an acceptable performance,
making applications which use such tasks accessible to a substan-
tially larger audience.
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